Biological Invasions

, Volume 15, Issue 10, pp 2311–2331 | Cite as

Invasive ants as back-seat drivers of native ant diversity decline in New Caledonia

  • Maïa Berman
  • Alan N. Andersen
  • Thomas Ibanez
Original Paper


Biological invasions are typically associated with disturbance, which often makes their impact on biodiversity unclear—biodiversity decline might be driven by disturbance, with the invader just being a ‘passenger’. Alternatively, an invader may act as a ‘back-seat driver’, being facilitated by disturbance that has already caused some biodiversity decline, but then causing further decline. Here we examine the interactive effects of anthropogenic fire and invasive ant species (Anoplolepis gracilipes or Wasmannia auropunctata) on native ant diversity in New Caledonia, a globally recognized biodiversity hotspot. We first examined native ant diversity at nine paired burnt and unburnt sites, with four pairs invaded by Anoplolepis, 5 years after an extensive fire. In the absence of invasion, native epigaeic ants were resilient to fire, but native ant richness and the abundance of Forest Opportunists were markedly lower in invaded burnt sites. Second, we examined native ant diversity along successional gradients from human-derived savanna to natural rainforest in the long-term absence of fire, where there was a disconnection between disturbance-mediated variation in microhabitat and the abundance of the disturbance specialist Wasmannia. All native ant diversity responses (total abundance, richness, species composition, functional group richness and the abundance of Forest Opportunists) declined independently of microhabitat variables but in direct association with high Wasmannia abundance. Our results indicate that invasive ants are acting as back-seat drivers of biodiversity decline in New Caledonia, with invasion facilitated by disturbance but then causing further biodiversity decline.


Fire Functional groups Habitat disturbance Interactive effects Edge-effects Biodiversity hotspot 



We thank Ben Hoffmann, Andrew Suarez, Nathan Sanders and Andy Sheppard for their comments on draft versions of this paper. We are most grateful to the Gohapin tribe for welcoming us onto their land in the Aoupinié region; to the New Caledonian Direction de l’Environnement of both Province Sud and Province Nord for providing collecting permits; to Frederic Rigault and Gilles Dagostini for botanical information; to Denis Meandu-Poveu, Cinzia Spinnelli, Perrine Poher, Quentin Auriac, Viviane Degret and Barabara Pianu for help in the field and in the lab; and to Keith McGuiness for statistical advice. This study was funded as part of the ‘Incendies Nouvelle Caledonie’ project (INC), financed by the Agence Nationale de la Recherche BDIV-07-008 (ANR, France) and by the Southern Province of New Caledonia; we also thank INC project leaders Christelle Hély and Cédric Gaucherel for their support.


  1. Abbott KL (2005) Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insectes Soc 52(3):266–273. doi: 10.1007/s00040-005-0800-6 CrossRefGoogle Scholar
  2. Agosti D, Alonso L (2000) The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer J, Alonso L, Schultz T (eds) Ants: standard methods for measuring and monitoring biodiversity. Biological diversity handbook series. Smithsonian Institution Press, Washington, p 280, pp 204–206Google Scholar
  3. Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. J Biogeogr 22:15–29CrossRefGoogle Scholar
  4. Andersen AN (2010) Functional groups in ant community ecology. In: Lach L, Parr CL, Abbott K (eds) Ant ecology. Oxford University Press, Oxford, pp 142–144Google Scholar
  5. Andersen AN, Yen AL (1985) Immediate effects of Ore on ants in the semi-arid mallee region of north-western Victoria. Aust J Ecol 10(1):25–30. doi: 10.1111/j.1442-9993.1985.tb00860.x CrossRefGoogle Scholar
  6. Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46Google Scholar
  7. Bauer J (2012) Invasive species: “back-seat drivers” of ecosystem change? Biol Invasions:1–10. doi: 10.1007/s10530-011-0165-x
  8. Bolton B (1994) Identification guide to the ant genera of the world. Harvard University Press, HarvardGoogle Scholar
  9. Brühl CA (1998) Stratification of ants (Hymenoptera, Formicidae) in a primary rain forest in Sabah, Borneo. J Trop Ecol 14(3):285CrossRefGoogle Scholar
  10. Bulleri F, Balata D, Bertocci I, Tamburello L, Benedetti-Cecchi L (2010) The seaweed Caulerpa racemosa on mediterranean rocky reefs: from passenger to driver of ecological change. Ecology 91(8):2205–2212. doi: 10.1890/09-1857.1 PubMedCrossRefGoogle Scholar
  11. Carpenter RJ (2003) Reproductive traits of tropical rain-forest trees in New Caledonia. J Trop Ecol 19(4):351–365. doi: 10.1017/s0266467403003407 CrossRefGoogle Scholar
  12. Clark DB, Concepcion G, Pazmino O, Donoso C, Villacis YP (1982) The tramp ant Wasmannia auropunctata: autecology and effects on ant diversity and distribution on Santa Cruz Island, Galapagos. Biotropica 14(3):196–207CrossRefGoogle Scholar
  13. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PlymouthGoogle Scholar
  14. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23(ArticleType: research-article/Full publication date: 1992/Copyright © 1992 Annual Reviews):63–87Google Scholar
  15. Davis MA (2003) Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53(5):481–489. doi:10.1641/0006-3568(2003)053[0481:BGDCFI];2Google Scholar
  16. Diamond JM (1983) Ecology: laboratory, field and natural experiments. Nature 304(5927):586–587CrossRefGoogle Scholar
  17. Diamond JM (1989) Overview of recent extinctions. In: Western D, Pearl M (eds) Conservation for the twenty-first century. Oxford University Press, OxfordGoogle Scholar
  18. Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20(9):470–474. doi: 10.1016/j.tree.2005.07.006 PubMedCrossRefGoogle Scholar
  19. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22(9):489–496. doi: 10.1016/j.tree.2007.07.001 PubMedCrossRefGoogle Scholar
  20. Donlan CJ, Wilcox C (2008) Diversity, invasive species and extinctions in insular ecosystems. J Appl Ecol 45(4):1114–1123. doi: 10.1111/j.1365-2664.2008.01482.x CrossRefGoogle Scholar
  21. Drescher J, Feldhaar H, Blüthgen N (2011) Interspecific aggression and resource monopolization of the invasive ant Anoplolepis gracilipes in Malaysian Borneo. Biotropica 43(1):93–99. doi: 10.1111/j.1744-7429.2010.00662.x CrossRefGoogle Scholar
  22. Emery C (1883) Alcune formiche della nuova caledonia. Bollettino della Societa Entomologica Italiana 15:145–151Google Scholar
  23. Espeland M, Johanson KA (2010) The diversity and radiation of the largest monophyletic animal group on New Caledonia (Trichoptera: Ecnomidae: Agmina). J Evol Biol 23(10):2112–2122. doi: 10.1111/j.1420-9101.2010.02072.x PubMedCrossRefGoogle Scholar
  24. Espeland M, Johanson KA, Hovmoller R (2008) Early Xanthochorema (Trichoptera, Insecta) radiations in New Caledonia originated on ultrabasic rocks. Mol Phylogenet Evol 48(3):904–917. doi: 10.1016/j.ympev.2008.06.006 PubMedCrossRefGoogle Scholar
  25. Fabres G, Brown WL (1978) The recent introduction of the pest ant Wasmannia auropunctata into New Caledonia. Aust J Entomol 17(2):139–142. doi: 10.1111/j.1440-6055.1978.tb02220.x CrossRefGoogle Scholar
  26. Geiger EL, Gotsch SG, Damasco G, Haridasan M, Franco AC, Hoffmann WA (2011) Distinct roles of savanna and forest tree species in regeneration under fire suppression in a Brazilian savanna. J Veg Sci 22(2):312–321. doi: 10.1111/j.1654-1103.2011.01252.x CrossRefGoogle Scholar
  27. Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philos Trans R Soc B 363(1508):3309–3317. doi: 10.1098/rstb.2008.0122 CrossRefGoogle Scholar
  28. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19(9):470–474. doi: 10.1016/j.tree.2004.07.005 PubMedCrossRefGoogle Scholar
  29. Heads M (2008) Panbiogeography of New Caledonia, south-west Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands. J Biogeogr 35(12):2153–2175. doi: 10.1111/j.1365-2699.2008.01977.x CrossRefGoogle Scholar
  30. Hermoso V (2011) Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol Appl 21(1):175–188. doi: 10.1890/09-2011.1 PubMedCrossRefGoogle Scholar
  31. HilleRisLambers J, Yelenik SG, Colman BP, Levine JM (2010) California annual grass invaders: the drivers or passengers of change? J Ecol 98(5):1147–1156. doi: 10.1111/j.1365-2745.2010.01706.x PubMedCrossRefGoogle Scholar
  32. Hoffman BD, Andersen AN (2003) Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral Ecol 28:444–464CrossRefGoogle Scholar
  33. Hoffmann B, Parr C (2008) An invasion revisited: the African big-headed ant (Pheidole megacephala) in northern Australia. Biol Invasions 10(7):1171–1181. doi: 10.1007/s10530-007-9194-x CrossRefGoogle Scholar
  34. Hoffmann B, Saul W-C (2010) Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biol Invasions 12(9):3093–3108. doi: 10.1007/s10530-010-9701-3 CrossRefGoogle Scholar
  35. Hoffmann BD, Andersen AN, Hill GJE (1999) Impact of an introduced ant on native rain forest invertebrates: Pheidole megacephala in monsoonal Australia. Oecologia 120(4):595–604. doi: 10.1007/pl00008824 Google Scholar
  36. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  37. Holway DA (1998) Effect of Argentine ant invasions on ground-dwelling arthropods in northern California riparian woodlands. Oecologia 116(1):252–258. doi: 10.1007/s004420050586 CrossRefGoogle Scholar
  38. Holway DA (2005) Edge effects of an invasive species across a natural ecological boundary. Biol Conserv 121(4):561–567. doi: 10.1016/j.biocon.2004.06.005 CrossRefGoogle Scholar
  39. Holway DA, Suarez AV (2006) Homogenization of ant communities in mediterranean California: the effects of urbanization and invasion. Biol Conserv 127(3):319–326. doi: 10.1016/j.biocon.2005.05.016 CrossRefGoogle Scholar
  40. Holway DA, Lach L, Suarez AV, Tsutsui ND, Case TJ (2002) The causes and consequences of ant invasions. Annu Rev Ecol Syst 33:181–233CrossRefGoogle Scholar
  41. Hope G, Pask J (1998) Tropical vegetational change in the late Pleistocene of New Caledonia. Palaeogeogr Palaeoclimatol Palaeoecol 142(1–2):1–21. doi: 10.1016/s0031-0182(97)00140-5 CrossRefGoogle Scholar
  42. Ibanez T, Borgniet L, Mangeas M, Gaucherel C, Geraux H, Hely C (2012) Rainforest and savanna landscape dynamics in New Caledonia: towards a mosaic of stable rainforest and savanna states? Austral Ecol. doi: 10.1111/j.1442-9993.2012.02369.x
  43. Ibanez T, Hély C, Gaucherel C (2013) Sharp transitions in microclimatic conditions between savanna and forest in New Caledonia: insights into the vulnerability of forest edges to fire. Austral Ecol. doi: 10.1111/aec.12015
  44. Jaffre T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Barker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (Serpentine) soils. Intercept Ltd., Andover, pp 101–107Google Scholar
  45. Jaffré T (1993) The relationship between ecological diversity and floristic diversity in New Caledonia. Biodivers Lett 1:82–87CrossRefGoogle Scholar
  46. Jaffre T, Veillon J-M, Rigault F, Dagostini G (1997) Impact des feux de brousse sur la flore et les groupement végétaux de Nouvelle Calédonie. ORSTOM, NoumeaGoogle Scholar
  47. Jaffré T, Bouchet P, Veillon J-M (1998) Threatened plants of New Caledonia: is the system of protected areas adequate? Biodivers Conserv 7:109–135CrossRefGoogle Scholar
  48. Jourdan H (1997) Are serpentine biota free from biological invasions? An example of an ant community from southern New Caledonia. Documents Scientifiques et Techniques 3(2):107–108Google Scholar
  49. Jourdan H (1999) Dynamique de la biodiversité de quelques écosystèmes terrestres néo-calédoniens sous l’effet de l’invasion de la fourmi peste Wasmannia auropunctata PhD thesis, Université Paul Sabatier, ToulouseGoogle Scholar
  50. Jourdan H, Mille C (2006) Les invertebres introduits dans l’archipel neo-caledonien: especes envahissantes et potentiellement envahissantes. Premiere evaluation et recommandations pour leur gestion. In: Espèces envahissantes dans l’archipel néo-calédonien. IRD, Noumea, Nouvelle CaledonieGoogle Scholar
  51. Jourdan H, Sadlier RA, Bauer AM (2001) Little fire ant invasion (Wasmannia auropunctata) as a threat to New Caledonian lizards: evidences from a Sclerophyll forest (Hymenoptera: Formicidae). Sociobiology 38:283–301Google Scholar
  52. Kaspari M, Weiser MD (2000) Ant activity along moisture gradients in a neotropical forest. Biotropica 32(4a):703–711. doi: 10.1111/j.1744-7429.2000.tb00518.x Google Scholar
  53. King JR, Tschinkel WR (2006) Experimental evidence that the introduced fire ant, Solenopsis invicta, does not competitively suppress co-occurring ants in a disturbed habitat. J Anim Ecol 75(6):1370–1378. doi: 10.1111/j.1365-2656.2006.01161.x PubMedCrossRefGoogle Scholar
  54. King JR, Tschinkel WR (2008) Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc Natl Acad Sci 105(51):20339–20343. doi: 10.1073/pnas.0809423105 PubMedCrossRefGoogle Scholar
  55. King J, Moutsinga J-B, Doufoulon G (1997) Conversion of anthropogenic savanna to production forest through fire-protection of the forest-savanna edge in Gabon, Central Africa. For Ecol Manag 94(1–3):233–247. doi: 10.1016/s0378-1127(96)03925-4 CrossRefGoogle Scholar
  56. LaPolla JS, Brady SG, Shattuck SO (2010) Phylogeny and taxonomy of the Prenolepis genus-group of ants (Hymenoptera: Formicidae). Syst Entomol 35:118–131CrossRefGoogle Scholar
  57. Le Breton J, Chazeau J, Jourdan H (2003) Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest. Austral Ecol 28:204–209CrossRefGoogle Scholar
  58. Le Breton J, Jourdan H, Chazeau J, Orivel J, Dejean A (2005) Niche opportunity and ant invasion: the case of Wasmannia auropunctata in a New Caledonian rain forest. J Trop Ecol 21(1):93–98. doi: 10.1017/s0266467404002019 CrossRefGoogle Scholar
  59. Le Breton J, Orivel J, Chazeau J, Dejean A (2006) Unadapted behaviour of native, dominant ant species during the colonization of an aggressive, invasive ant. Ecol Res 22(1):107–114. doi: 10.1007/s11284-006-0014-z CrossRefGoogle Scholar
  60. LeBrun EG (2007) An experimental study of competition between fire ants and argentine ants in their native range. Ecology 88(1):63–75. doi:10.1890/0012-9658(2007)88[63:AESOCB];2Google Scholar
  61. LeBrun EG, Plowes RM, Gilbert LE (2012) Imported fire ants near the edge of their range: disturbance and moisture determine prevalence and impact of an invasive social insect. J Animal Ecol. doi: 10.1111/j.1365-2656.2012.01954.x
  62. Lodge DM, Williams S, MacIsaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecol Appl 16(6):2035–2054. doi:10.1890/1051-0761(2006)016[2035:BIRFUP];2Google Scholar
  63. Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World’s worst invasive alien species a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG), a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), AucklandGoogle Scholar
  64. Lozon JD, MacIsaac HJ (1997) Biological invasions: are they dependent on disturbance? Environ Rev 5(2):131–144. doi: 10.1139/a97-007 CrossRefGoogle Scholar
  65. Lubin YD (1984) Changes in the native fauna of the Galápagos Islands following invasion by the little red fire ant, Wasmannia auropunctata. Biol J Linn Soc 21(1–2):229–242. doi: 10.1111/j.1095-8312.1984.tb02064.x CrossRefGoogle Scholar
  66. Lucky A, Ward PS (2010) Taxonomic revision of the ant genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Zootaxa 2688:1–67Google Scholar
  67. MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology 86(1):42–55. doi: 10.1890/04-0669 CrossRefGoogle Scholar
  68. Majer JD, Delabie JHC (1999) Impact of tree isolation on arboreal and ground ant communities in cleared pasture in the Atlantic rain forest region of Bahia, Brazil. Insectes Soc 46(3):281–290. doi: 10.1007/s000400050147 CrossRefGoogle Scholar
  69. Majer JD, Delabie JHC, McKenzie NL (1997) Ant litter fauna of forest, forest edges and adjacent grassland in the Atlantic rain forest region of Bahia, Brazil. Insectes Soc 44(3):255–266. doi: 10.1007/s000400050046 CrossRefGoogle Scholar
  70. McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26(3):579–594. doi: 10.1046/j.1365-2699.1999.00309.x CrossRefGoogle Scholar
  71. McGlynn TP (1999) The worldwide transfer of ants: geographical distribution and ecological invasions. J Biogeogr 26(3):535–548. doi: 10.1046/j.1365-2699.1999.00310.x CrossRefGoogle Scholar
  72. Menke SB, Holway DA (2006) Abiotic factors control invasion by Argentine ants at the community scale. J Anim Ecol 75(2):368–376. doi: 10.1111/j.1365-2656.2006.01056.x PubMedCrossRefGoogle Scholar
  73. Menke SB, Fisher RN, Jetz W, Holway DA (2007) Biotic and abiotic controls of argentine ant invasion success at local and landscape scales. Ecology 88(12):3164–3173. doi: 10.1890/07-0122.1 PubMedCrossRefGoogle Scholar
  74. Mikheyev AS, Tchingnoumba L, Henderson A, Alonso A (2008) Effect of propagule pressure on the establishment and spread of the little fire ant Wasmannia auropunctata in a Gabonese oilfield. Divers Distrib 14:301–306. doi: 10.1111/j.1472-4642.2007.00463.x
  75. Morat P, Jaffre T, Tronchet F, Munzinger J, Pillon Y, Veillon J-M, Chalopin M (2012) The taxonomic database « FLORICAL » and characteristics of the indigenous flora of New Caledonia. Adansonia 3(34):179–221Google Scholar
  76. Murienne J, Guilbert E, Grandcolas P (2009) Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biol J Linn Soc 97:177–184CrossRefGoogle Scholar
  77. Myers N (1988) Threatened biotas: “Hot Spots” in tropical forests. Environmentalist 8(3):187–208PubMedCrossRefGoogle Scholar
  78. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6(9):812–817. doi: 10.1046/j.1461-0248.2003.00512.x CrossRefGoogle Scholar
  79. Orivel J, Grangier J, Foucaud J, Le Breton J, Andres F-X, Jourdan H, Delabie JHC, Fournier D, Cerdan P, Facon B, Estoup A, Dejean A (2009) Ecologically heterogeneous populations of the invasive ant Wasmannia auropunctata within its native and introduced ranges. Ecol Entomol 34(4):504–512. doi: 10.1111/j.1365-2311.2009.01096.x CrossRefGoogle Scholar
  80. Parr CL, Andersen AN (2008) Fire resilience of ant assemblages in long-unburnt savanna of northern Australia. Austral Ecol 33(7):830–838. doi: 10.1111/j.1442-9993.2008.01848.x CrossRefGoogle Scholar
  81. Porter SD, Savignano D (1990) Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71(6):2095. doi: 10.2307/1938623 CrossRefGoogle Scholar
  82. R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  83. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9(5):603–614. doi: 10.1111/j.1461-0248.2006.00911.x PubMedCrossRefGoogle Scholar
  84. Ray D, Nepstad D, Moutinho P (2005) Micrometeorological and canopy controls of fire susceptibility in a forested amazon landscape. Ecol Appl 15(5):1664–1678. doi: 10.1890/05-0404 CrossRefGoogle Scholar
  85. Reimer NJ (1994) Distribution and impact of alien ants in vulnerable Hawaiian ecosystems. In: Williams DF (ed) Exotic ants: biology, impact, and control of introduced species. Westview Press, Boulder, pp 11–22Google Scholar
  86. Safford HD, Harrison S (2004) Fire effects on plant diversity in serpentine vs. sandstone chaparral. Ecology 85(2):539–548. doi: 10.1890/03-0039 CrossRefGoogle Scholar
  87. Samways MJ, Osborn R, Carliel F (1997) Effect of a highway on ant (Hymenoptera: Formicidae) species composition and abundance, with a recommendation for roadside verge width. Biodivers Conserv 6(7):903–913. doi: 10.1023/a:1018355328197 CrossRefGoogle Scholar
  88. Sanders NJ, Barton KE, Gordon DM (2001) Long-term dynamics of the distribution of the invasive Argentine ant Linepithema humile and native ant taxa in northern California. Oecologia 127(1):123–130. doi: 10.1007/s004420000572 CrossRefGoogle Scholar
  89. Seabloom EW, Harpole WS, Reichman OJ, Tilman D (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species. Proc Natl Acad Sci 100(23):13384–13389. doi: 10.1073/pnas.1835728100 PubMedCrossRefGoogle Scholar
  90. Simao MCM, Flory SL, Rudgers JA (2010) Experimental plant invasion reduces arthropod abundance and richness across multiple trophic levels. Oikos 119(10):1553–1562. doi: 10.1111/j.1600-0706.2010.18382.x CrossRefGoogle Scholar
  91. Simberloff D (1995) Why do introduced species appear to devastate islands more than mainland areas? Pac Sci 49(1):87Google Scholar
  92. Smith SA, Sadlier RA, Bauer AM, Austin CC, Jackman T (2007) Molecular phylogeny of the scincid lizards of New Caledonia and adjacent areas: evidence for a single origin of the endemic skinks of Tasmantis. Mol Phylogenet Evol 43(3):1151–1166. doi: 10.1016/j.ympev.2007.02.007 PubMedCrossRefGoogle Scholar
  93. Sobrinho TG, Schoereder JH (2007) Edge and shape effects on ant (Hymenoptera: Formicidae) species richness and composition in forest fragments. Biodivers Conserv 16(5):1459–1470. doi: 10.1007/s10531-006-9011-3 CrossRefGoogle Scholar
  94. Stiles JH, Jones RH (1998) Distribution of the red imported fire ant, Solenopsis invicta, in road and powerline habitats. Landsc Ecol 13(6):335–346. doi: 10.1023/a:1008073813734 CrossRefGoogle Scholar
  95. Stuble KL, Kirkman LK, Carroll CR, Sanders NJ (2011) Relative effects of disturbance on red imported fire ants and native ant species in a longleaf pine ecosystem. Conserv Biol 25(3):618–622. doi: 10.1111/j.1523-1739.2010.01634.x PubMedCrossRefGoogle Scholar
  96. Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79(6):2041–2056. doi:10.1890/0012-9658(1998)079[2041:EOFAIO];2Google Scholar
  97. Taylor RW (1987) A checklist of the ants of Australia, New Caledonia and New Zealand (Hymenoptera: Formicidae). CSIRO Div Entomol Report 41:1–92Google Scholar
  98. Vitousek PM (1996) Biological invasions as global environmental change. Am Sci 84(5):468Google Scholar
  99. Walker KL (2006) Impact of the little fire ant, Wasmannia auropunctata, on native forest ants in Gabon. Biotropica 38(5):666–673CrossRefGoogle Scholar
  100. Ward PS (1984) A revision of the ant genus Rhytidoponera (Hymenoptera: Formicidae) in New Caledonia. Aust J Zool 32:131–175CrossRefGoogle Scholar
  101. Ward PS (1987) Distribution of the introduced Argentine ant (Iridomyrmex humilis) in natural habitats of the lower Sacramento Valley and its effects on the indigenous ant fauna. Hilgardia 55(2):1–16Google Scholar
  102. Williamson MH (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maïa Berman
    • 1
    • 2
    • 3
  • Alan N. Andersen
    • 1
  • Thomas Ibanez
    • 4
  1. 1.CSIRO Ecosystem SciencesWinnellieAustralia
  2. 2.Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinAustralia
  3. 3.Université de Montpellier II, UMR AMAPMontpellierFrance
  4. 4.Institut Agronomique néo-Calédonien (IAC)/UMR AMAP/Centre IRDNouméa, Nouvelle-CalédonieFrance

Personalised recommendations