Biological Invasions

, Volume 15, Issue 10, pp 2205–2218 | Cite as

Native fish avoid parasite spillback from multiple exotic hosts: consequences of host density and parasite competency

  • Rachel A. Paterson
  • Carlos A. Rauque
  • M. Valeria Fernandez
  • Colin R. Townsend
  • Robert Poulin
  • Daniel M. Tompkins
Original Paper


Disease-mediated impacts of exotic species on their native counterparts are often ignored when parasite-free individuals are translocated. However, native parasites are frequently acquired by exotic species, thus providing a mechanism through which native host-parasite dynamics may be altered. In Argentina, multiple exotic salmonids are host to the native fish acanthocephalan parasite Acanthocephalus tumescens. Field evidence suggests that rainbow trout, Oncorhynchus mykiss, may be a major contributor to the native parasite’s population. We used a combination of experimental infections (cystacanth—juvenile worm transmission from amphipod to fish; post-cyclic—adult worm transmission between definitive fish hosts) and dynamic population modelling to determine the extent to which exotic salmonid hosts may alter A. tumescens infections in native freshwater fish. Experimental cystacanth infections demonstrated that although A. tumescens establishes equally well in native and exotic hosts, parasite growth and maturity is superior in exotic O. mykiss. Experimental post-cyclic infections also showed greater establishment success of A. tumescens in O. mykiss, though post-cyclic transmission did not result in greater parasite size or maturity. Dynamic population modelling, however, suggested that exotic salmonids may have a very limited influence on the A. tumescens population overall, due to the majority of A. tumescens individuals being maintained by more abundant native hosts. This research highlights the importance of considering both a host’s relative density and its competency for parasites when evaluating whether exotic species can modify native host-parasite dynamics.


Parasites Acanthocephalan Salmonids Argentina Galaxias maculatus Oncorhynchus mykiss 



We wish to thank L. Semenas, G. Viozzi, R. Vega (Laboratorio de Parasitología, Universidad Nacional del Comahue), M. Alonso, P. Di Giusto, O. Quatrin, M. Ugoccioni, V. Baez and the staff of Centro de Salmonicultura Bariloche for their assistance. Funding for this project was provided by a Marsden grant (Royal Society of New Zealand), Landcare Research, and the Elman Poole Travelling Fellowship (RAP). The manuscript was greatly improved by the comments of three anonymous reviewers.


  1. Arismendi I, Soto D, Penaluna B, Jara C, Leal C, Leon-Munoz J (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in Northern Patagonian lakes. Freshw Biol 54(5):1135–1147. doi: 10.1111/j.1365-2427.2008.02157.x CrossRefGoogle Scholar
  2. Bello MT (1995) Ecologia de la ictiofauna de un sector del Lago Moreno. Universidad Nacional del Comahue, Proyecto de Investigacion, San Carlos de BarilocheGoogle Scholar
  3. Brown AF (1986) Evidence for density-dependent establishment and survival of Pomphorhynchus laevis (Muller, 1776) (Acanthocephala) in laboratory-infected Salmo gairdneri Richardson and its bearing on wild populations in Leuciscus cephalus (L). J Fish Biol 28(6):659–669. doi: 10.1111/j.1095-8649.1986.tb05201.x CrossRefGoogle Scholar
  4. Cherwell (2000) Modelmaker user manual. Cherwell Scientific Limited, OxfordGoogle Scholar
  5. Clements J (1988) Salmon at the antipodes: a history and review of trout, salmon and char and introduced coarse fish in Australasia. Skipton, BallaratGoogle Scholar
  6. Crompton DW (1970) An ecological approach to acanthocephalan physiology. Cambridge University Press, CambridgeGoogle Scholar
  7. Crompton DW, Whitfield PJ (1968) Course of infection and egg production of Polymorphus minutus (Acanthocephala) in domestic ducks. Parasitol 58:231–246. doi: 10.1017/S0031182000073583 CrossRefGoogle Scholar
  8. Daszak P, Cunningham AA, Hyatt AN (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287:443–449. doi: 10.1126/science.287.5452.443 PubMedCrossRefGoogle Scholar
  9. Dobson AP (1988) The population biology of parasite-induced chances in host behavior. Q Rev Biol 63:139–165PubMedCrossRefGoogle Scholar
  10. Hershberger P, Gregg J, Grady C, Collins R, Winton J (2010a) Kinetics of viral shedding provide insights into the epidemiology of viral hemorrhagic septicemia in Pacific herring. Mar Ecol Prog Ser 400:187–193. doi: 10.3354/meps08420 CrossRefGoogle Scholar
  11. Hershberger P, van der Leeuw B, Gregg J et al (2010b) Amplification and transport of an endemic fish disease by an introduced species. Biol Invasions 12:3665–3675. doi: 10.1007/s10530-010-9760-5 CrossRefGoogle Scholar
  12. Holey ME, Elliott RF, Marcquenski SV, Hnath JG, Smith KD (1998) Chinook salmon epizootics in Lake Michigan: possible contributing factors and management implications. J Aquat Anim Health 10(2):202–210. doi: 10.1577/1548-8667(1998)010<0202:Cseilm>2.0.Co;2 CrossRefGoogle Scholar
  13. Jenkins M (2003) Prospects for biodiversity. Science 302(5648):1175–1177. doi: 10.1126/science.1088666 PubMedCrossRefGoogle Scholar
  14. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009a) Has the introduction of brown trout altered disease patterns in native New Zealand fish? Freshw Biol 54(9):1805–1818. doi: 10.1111/j.1365-2427.2009.02228.x CrossRefGoogle Scholar
  15. Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM (2009b) Parasite spillback: a neglected concept in invasion ecology? Ecology 90(8):2047–2056. doi: 10.1890/08-1085.1 PubMedCrossRefGoogle Scholar
  16. Kennedy CR (1999) Post-cyclic transmission in Pomphorhynchus laevis (Acanthocephala). Folia Parasitol 46(2):111–116Google Scholar
  17. Kennedy CR, Bush AO (1994) The relationship between pattern and scale in parasite communities: a stranger in a strange land. Parasitology 109(02):187–196. doi: 10.1017/S0031182000076290 PubMedCrossRefGoogle Scholar
  18. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16(4):199–204. doi: 10.1016/S0169-5347(01)02101-2 PubMedCrossRefGoogle Scholar
  19. Krkosek M, Lewis MA, Volpe JP (2005) Transmission dynamics of parasitic sea lice from farm to wild salmon. Proc R Soc London Ser B 272:689–696. doi: 10.1098/rspb.2004.3027 CrossRefGoogle Scholar
  20. Macchi PJ, Cussac VE, Alonso MF, Denegri MA (1999) Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol Freshw Fish 8(4):227–236. doi: 10.1111/j.1600-0633.1999.tb00074.x CrossRefGoogle Scholar
  21. Macchi PJ, Pascual MA, Vigliano PH (2007) Differential piscivory of the native Percichthys trucha and exotic salmonids upon the native forage fish Galaxias maculatus in Patagonian Andean lakes. Limnologica 37(1):76–87. doi: 10.1016/j.limno.2006.09.004 CrossRefGoogle Scholar
  22. Mastitsky SE, Veres JK (2010) Field evidence for a parasite spillback caused by exotic mollusc Dreissena polymorpha in an invaded lake. Parasitol Res 106(3):667–675. doi: 10.1007/s00436-010-1730-4 PubMedCrossRefGoogle Scholar
  23. Milano D (1996) Reproducción de la perca de boca chica Percichthys trucha (Cuvier & Valenciennes, 1840) del lago Moreno. Dissertation, Universidad Nacional del ComahueGoogle Scholar
  24. Milano ME (2003) Biología de Galaxias platei (Pisces, Galaxiidae): especializaciones relativas a su distribución. Dissertation, Universidad Nacional del ComahueGoogle Scholar
  25. Miller DJ (1989) Introductions and extinction of fish in the African great lakes. Trends Ecol Evol 4(2):56–59. doi: 10.1016/0169-5347(89)90145-6 PubMedCrossRefGoogle Scholar
  26. Nichol ST, Rowe JE, Winton JR (1995) Molecular epizootiology and evolution of the glycoprotein and non-virion protein genes of infectious hematopoietic necrosis virus, a fish rhabdovirus. Virus Res 38:159–173. doi: 10.1016/0168-1702(95)00054-T PubMedCrossRefGoogle Scholar
  27. Nickol BB (1985) Epizootiology. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 307–346Google Scholar
  28. Pascual MA, Lancelotti JL, Ernst B, Ciancio JE, Aedo E, Garcia-Asorey M (2009) Scale, connectivity, and incentives in the introduction and management of non-native species: the case of exotic salmonids in Patagonia. Front Ecol Environ 7(10):533–540. doi: 10.1890/070127 CrossRefGoogle Scholar
  29. Paterson RA, Townsend CR, Poulin R, Tompkins DM (2011) Introduced brown trout alter native acanthocephalan infections in native fish. J Anim Ecol 80(5):990–998. doi: 10.1111/j.1365-2656.2011.01834.x PubMedCrossRefGoogle Scholar
  30. Paterson RA, Townsend CR, Tompkins DM, Poulin R (2012) Ecological determinants of parasite acquisition by exotic fish species. Oikos 121(11):1889–1895. doi: 10.1111/j.1600-0706.2012.20143.x CrossRefGoogle Scholar
  31. Poulin R, Mouillot D (2003) Host introductions and the geography of parasite taxonomic diversity. J Biogeogr 30(6):837–845. doi: 10.1046/j.1365-2699.2003.00868.x CrossRefGoogle Scholar
  32. Rauque CA, Semenas L (2007) Infection pattern of two sympatric acanthocephalan species in the amphipod Hyalella patagonica (Amphipoda: Hyalellidae) from Lake Mascardi (Patagonia, Argentina). Parasitol Res 100(6):1271–1276. doi: 10.1007/s00436-006-0420-8 PubMedCrossRefGoogle Scholar
  33. Rauque CA, Semenas LG, Viozzi GP (2002) Post-cyclic transmission in Acanthocephalus tumescens (Acanthocephala: Echinorhynchidae). Folia Parasitol (Ceske Budejovice) 49(2):127–130Google Scholar
  34. Rauque CA, Viozzi GP, Semenas LG (2003) Component population study of Acanthocephalus tumescens (Acanthocephala) in fishes from Lake Moreno, Argentina. Folia Parasitol 50(1):72–78PubMedGoogle Scholar
  35. Rauque CA, Semenas LG, Viozzi GP (2006) Seasonality of recruitment and reproduction of Acanthocephalus tumescens (Acanthocephala) in fishes from Lake Moreno (Patagonia, Argentina). J Parasitol 92(6):1265–1269. doi: 10.1645/GE-764R1.1 PubMedCrossRefGoogle Scholar
  36. Revenga JE, Torres PF, Baiz M (2005) Impact of a caged—trout farm on parasites of Galaxias maculatus in Lake Moreno, Southern Argentina. J Parasitol 91(3):707–709. doi: 10.1645/GE-441R PubMedCrossRefGoogle Scholar
  37. Sala OE, Chapin FS, Armesto JJ et al (2000) Biodiversity–global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. doi: 10.1126/science.287.5459.1770 PubMedCrossRefGoogle Scholar
  38. Sato M, Kawaguchi Y, Nakajima J, Mukai T, Shimatani Y, Onikura N (2010) A review of the research on introduced freshwater fishes: new perspectives, the need for research, and management implications. Landsc Ecol Eng 6(1):99–108. doi: 10.1007/s11355-009-0086-3 CrossRefGoogle Scholar
  39. Semenas L, Trejo A (1997) Redescription of Acanthocephalus tumescens (von Linstow, 1896) (Palaeacanthocephala: Echinorhynchidae) in Galaxias maculatus (Pisces: Galaxiidae) in Patagonia (Argentina). Syst Parasitol 36(1):13–16. doi: 10.1023/A:1005725919148 CrossRefGoogle Scholar
  40. SPSS (2006) SPSS for Windows Version 15.0.0. SPSS, Inc., ChicagoGoogle Scholar
  41. Tekinay AA, Guner Y, Davies SJ (2003) Influence of dietary energy level on stomach emptying and appetite revival rates in rainbow trout, Oncorhynchus mykiss. Turk J Vet Anim Sci 27(5):1077–1084Google Scholar
  42. Tompkins DM, Poulin R (2006) Parasites and biological invasions. In: Allen RB, Lee WG (eds) Biological invasions in New Zealand. Springer, Berlin, pp 67–86CrossRefGoogle Scholar
  43. Tompkins DM, White AR, Boots M (2003) Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol Lett 6(3):189–196. doi: 10.1046/j.1461-0248.2003.00417.x CrossRefGoogle Scholar
  44. Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv Biol 17(1):38–47. doi: 10.1046/j.1523-1739.2003.02017.x CrossRefGoogle Scholar
  45. Valiente AG, Juanes F, Nunez P, Garcia-Vazquez E (2010) Brown trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 12(3):451–462. doi: 10.1007/s10530-009-9450-3 CrossRefGoogle Scholar
  46. Vigliano PH, Beauchchamp DA, Milano D et al (2009) Quantifying predation on galaxiids and other native organisms by introduced rainbow trout in an ultraoligotrophic lake in northern Patagonia, Argentina: a bioenergetics modeling approach. Trans Am Fish Soc 138:1405–1419. doi: 10.1577/T08-067.1 CrossRefGoogle Scholar
  47. Wiles GJ, Bart J, Beck RE, Aguon CF (2003) Impacts of the brown tree snake: patterns of decline and species persistence in Guam’s avifauna. Conserv Biol 17(5):1350–1360. doi: 10.1046/j.1523-1739.2003.01526.x CrossRefGoogle Scholar
  48. Winemiller KO, Rose KA (1992) Patterns of life history diversification in North American fishes: implications for population regulation. Can J Fish Aquat Sci 49(10):2196–2218. doi: 10.1139/f92-242 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rachel A. Paterson
    • 1
    • 4
  • Carlos A. Rauque
    • 2
  • M. Valeria Fernandez
    • 2
  • Colin R. Townsend
    • 1
  • Robert Poulin
    • 1
  • Daniel M. Tompkins
    • 3
  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand
  2. 2.Laboratorio de ParasitologiaINIBIOMA CONICET-Universidad Nacional del ComahueSan Carlos de BarilocheArgentina
  3. 3.Landcare ResearchDunedinNew Zealand
  4. 4.School of Biological Sciences, Medical Biology CentreQueen’s University BelfastBelfastUK

Personalised recommendations