Biological Invasions

, Volume 15, Issue 9, pp 1907–1923 | Cite as

Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey

  • Wafa Bouzid
  • Jan Štefka
  • Lilia Bahri-Sfar
  • Peter Beerli
  • Géraldine Loot
  • Sovan Lek
  • Noura Haddaoui
  • Václav Hypša
  • Tomáš Scholz
  • Tahani Dkhil-Abbes
  • Rafik Meddour
  • Oum Kalthoum Ben Hassine
Original Paper


Introduced species have the potential to outperform natives via the introduction of new parasites to which the native ecosystem is vulnerable. Cryptic diversity within an invasive species can obscure invasion patterns and confound proper management measures. The aim of this study is to use coalescent theory based methodology to trace recent routes of invasion in populations of Ligula intestinalis, a globally distributed fish parasite possessing both native and recently introduced populations in North Africa. Molecular analyses of mitochondrial DNA discerned a pronounced genetic divergence between introduced and native populations. Distribution of mitochondrial haplotypes demonstrated common origin of European populations with North African parasites sampled from introduced fish species in Tunisia. To test the suggested pathway of introduction, microsatellite data were examined in a model-based coalescent analysis using the software MIGRATE, where Europe to Tunisia direction of migration was favoured over alternative hypotheses of gene flow. Specificity of Tunisian populations to different host species was assessed in an epidemiologic survey confirming prevailing host-based division between introduced and native parasites in North Africa. This approach combining advanced analysis of molecular markers with host-specificity data allows revealing the evolution of host-parasite interactions following biological invasion and provides basis for devising future management measurements.


Aquaculture Coevolution Directionality of migration Population split Ligula intestinalis Parasite introduction 



We thank Abdessalem Arab, Sonia Thabet, Abdelkader Lounaci and Mejdeddine Kraïem for providing part of the Ligula samples. The study was supported by the Embassy of France in Tunisia and by the Czech Science Foundation (projects No. 206/08/1019, 506/12/1632). Research stay of JŠ in the Natural History Museum was funded by Marie Curie Fellowship (project no. 235123, FP7-PEOPLE-IEF-2008). PB was partly supported by American National Science Foundation grants DEB 0822626 and DEB 1145999. Part of the computations were performed using the computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum (provided under the programme Projects of Large Infrastructure for Research, Development, and Innovations, LM2010005) and using the Florida State University High Performance Computing facility.


  1. Arme C (1997) Ligulosis in two cyprinid hosts: Rutilus rutilus and Gobio gobio. Helmithologia 34:191–196Google Scholar
  2. Ascunce MS, Yang C–C, Oakey J, Calcaterra L, Wu W-J, Shih C-J, Goudet J, Ross KG, Shoemaker DW (2011) Global invasion history of the fire ant Solenopsis invicta. Science 331:1066–1068CrossRefPubMedGoogle Scholar
  3. Bahri-Sfar L, Haddaoui N, Bouzid W, Essetti I, Qninba A, Ben Hassine OK (2010) Compared parasitic infection of Ligula intestinalis (Cestoda: Diphyllobothridae) in Cyprinidae species: Rutilus rubilio and Scardinius erythrophthalmus in two dam reserves in Tunisia. Parasite 17:241–250CrossRefPubMedGoogle Scholar
  4. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345. doi: 10.1093/bioinformatics/bti803 CrossRefPubMedGoogle Scholar
  5. Beerli P (2009) How to use migrate or why are markov chain monte carlo programs difficult to use? In: Bertorelle G, Bruford MW, Hauffe HC et al (eds) Population genetics for animal conservation. Cambridge University Press, Cambridge, pp 42–79Google Scholar
  6. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326. doi: 10.1534/genetics.109.112532 CrossRefPubMedGoogle Scholar
  7. Blum MGB, Damerval C, Manel S, Francois O (2004) Brownian models and coalescent structures. Theor Popul Biol 65:249–261CrossRefPubMedGoogle Scholar
  8. Bouzid W, Lek S, Mace M, Ben Hassine OK, Etienne R, Legal L, Loot G (2008a) Genetic diversity of Ligula intestinalis (Cestoda: Diphyllobothriidea) based on analysis of inter-simple sequence repeat markers. J Zool Syst Evol Res 46:289–296CrossRefGoogle Scholar
  9. Bouzid W, Štefka J, Hypša V, Lek S, Scholz T, Legal L, Ben Hassine OK, Loot G (2008b) Geography and host specificity: two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). Int J Parasitol 38:1465–1479CrossRefPubMedGoogle Scholar
  10. Brown JE, Stepien CA (2010) Population genetic history of the dreissenid mussel invasions: expansion patterns across North America. Biol Invasions 12:3687–3710CrossRefGoogle Scholar
  11. Brown SP, Loot G, Grenfell BT, Guégan JF (2001) Host manipulation by Ligula intestinalis: accident or adaptation? Parasitology 123:519–529CrossRefPubMedGoogle Scholar
  12. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  13. Carter V, Pierce R, Dufour S, Arme C, Hoole D (2005) The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus. Reproduction 130:939–945CrossRefPubMedGoogle Scholar
  14. Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol Evol 20:110. doi: 10.1016/j.tree.2005.01.003 CrossRefPubMedGoogle Scholar
  15. Clayton DH, Al-Tamimi S, Johnson KP (2003) The ecological basis of coevolutionary history In: Page RDM (ed) Tangled trees: phylogeny, cospeciation and coevolution. University of Chicago Press, Chicago, pp 310–341Google Scholar
  16. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefPubMedGoogle Scholar
  17. Dejen E, Vijverberg J, Sibbing FA (2006) Spatial and temporal variation of cestode infection and its effects on two small barbs (Barbus humilis and B. tanapelagius) in Lake Tana, Ethiopia. Hydrobiologia 556:109–117CrossRefGoogle Scholar
  18. Djemali I (2005) Évaluation de la biomasse piscicole dans les plans d’eau douce tunisiens: approches analytique et acoustique. Institut National Agronomique de TunisieGoogle Scholar
  19. Djemali I, Kraïem MM, Cadic N, Proteau JP, El Abed A, Jarboui O (2003) Evaluation de la biomasse piscicole en eau douce par écho prospection: application à la retenue de Sidi Salem. Bull Inst Natl Sci Technol Mer 30:23–32Google Scholar
  20. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefPubMedGoogle Scholar
  21. Dubinina MN (1980) Tapeworms (Cestoda, Ligulidae) of the fauna of the USSR. Amerind Publishing Co, New DelhiGoogle Scholar
  22. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  23. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578CrossRefPubMedGoogle Scholar
  24. Fujisaki I, Pearlstine EV, Mazzotti FJ (2010) The rapid spread of invasive Eurasian collared doves Streptopelia decaocto in the continental USA follows human-altered habitats. Ibis 152:622–632CrossRefGoogle Scholar
  25. Goka K, Yokoyama J, Une Y, Kuroki T, Suzuki K, Nakahara M, Kobayashi A, Mizutani T, Inaba S, Hyatt AD (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18:4757–4774CrossRefPubMedGoogle Scholar
  26. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  27. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  28. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  29. Hoole D, Carter V, Dufour S (2010) Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model? Parasitology 137:425–438CrossRefPubMedGoogle Scholar
  30. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  31. Jeffreys H (1961) The theory of probability. Oxford University Press, New York. (3rd edition 1998)Google Scholar
  32. Kass RE, Raftery AE (1995) Bayes Factors. J Am Stat Assoc 90:773–779CrossRefGoogle Scholar
  33. Kennedy CR, Shears PC, Shears JA (2001) Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology 123:257–269CrossRefPubMedGoogle Scholar
  34. Khalil L, Polling L (1971) Checklist of the helminth parasites of african freshwater fishes. In: Farnham R (ed). Commonwealth Agricultural Bureaux publishing, Slough, pp 80Google Scholar
  35. Khamis FM, Karam N, Ekesi S, De Meyer M, Bonomi A, Gomulski LM, Scolari F, Gabrieli P, Siciliano P, Masiga D, Kenya EU, Gasperi G, Malacrida AR, Guglielmino CR (2009) Uncovering the tracks of a recent and rapid invasion: the case of the fruit fly pest Bactrocera invadens (Diptera: Tephritidae) in Africa. Mol Ecol 18:4798–4810CrossRefPubMedGoogle Scholar
  36. Kraïem M (1983) Les poissons d’eau douce de Tunisie: inventaire commenté et répartition géographique. Bull Inst Natl Sci Tech Océanogr Pêche Salammbô 10:107–124Google Scholar
  37. Kraïem M (1991) Étude Eco-biologique de principales espèces de poissons des retenues des barrages de Sidi Salem, Bir M’Cherga, Mellègue, Bouhertma, Nebhana et Sidi Saad. Rapports Techniques Projet Tuniso-Allemend de pêche continentale 11: 48Google Scholar
  38. Králová-Hromadová I, Bazsalovicsová E, Štefka J, Špakulová M, Vávrová S, Szemes T, Tkach V, Trudgett A, Pybus M (2011) Multiple origins of European populations of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae), a liver parasite of ruminants. Int J Parasitol 41:373–383CrossRefPubMedGoogle Scholar
  39. Li J, Liao X (2003) The taxonomic status of Digramma (Pseudophyllidae: Ligulidae) inferred from DNA sequences. J Parasitol 89:792–799CrossRefPubMedGoogle Scholar
  40. Li J, Liao X, Yang H (2000) Molecular characterization of a parasitic tapeworm (Ligula) based on DNA sequences from formalin-fixed specimens. Biochem Genet 38:309–322CrossRefPubMedGoogle Scholar
  41. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452Google Scholar
  42. Light JE, Hafner MS (2008) Codivergence in heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Syst Biol 57:449–465CrossRefPubMedGoogle Scholar
  43. Loot G, Lek S, Brown SP, Guégan J-F (2001a) Phenotypic modification of roach (Rutilus rutilus L.) infected with Ligula intestinalis L. (Cestoda: Pseudophyllidea). J Parasitol 87:1002–1010PubMedGoogle Scholar
  44. Loot G, Lek S, Dejean D, Guégan J-F (2001b) Parasite-induced mortality in three host populations of the roach Rutilus rutilus (L.) by the tapeworm Ligula intestinalis (L.). Ann Limnol Int J Limnol 37:151–159CrossRefGoogle Scholar
  45. Loot G, Aulagnier S, Lek S, Thomas F, Guégan J-F (2002) Experimental demonstration of a behavioural modification in a cyprinid fish, Rutilus rutilus (L.), induced by a parasite, Ligula intestinalis (L.). Can J Zool 80:738–743CrossRefGoogle Scholar
  46. Loot G, Park Y-S, Lek S, Brosse S (2006) Encounter rate between local populations shapes host selection in complex parasite life cycle. Biol J Lin Soc 89:99–106CrossRefGoogle Scholar
  47. Losse G, Nau W, Winter M (1991) Le développement de la pêche en eau douce dans le nord de la Tunisie: Projet de la coopération technique Tuniso-Allemande. Utilisation des barrages pour la pisciculture, GTZ GmbhGoogle Scholar
  48. Manilla G, Albertini D, Falasca MP (1984) Ligula intestinalis (L., 1758) Gmelin, 1790 (Cestoda: Ligulidae) in Rutilus rubilio (Pisces: Cyprinidae) of Campotosto Lake. Riv Parasitol 45:263–279Google Scholar
  49. Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). J Parasitol 68:131–133Google Scholar
  50. Meddour A (1988) Parasites of freshwater fishes from Lake Oubeira. Dissertation, Department of Zoology, The University of Liverpool, UK, AlgeriaGoogle Scholar
  51. Meddour A, Rouabhi A, Meddour-Bouderda K, Loucif N, Remili A, Khataly Y (2005) Expérimentations sur la reproduction artificielle de Sander lucioperca, Hypophthalmichthys molitrix et Aristichthys nobilis en Algérie. Sci Technol 23:63–71Google Scholar
  52. Mergeay J, Verschuren D, De Meester L (2006) Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proc R Soc Lond Biol 273:2839–2844CrossRefGoogle Scholar
  53. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  54. Nuismer SL, Thompson JN (2006) Coevolutionary alternation in antagonistic interactions. Evolution 60:2207–2217PubMedGoogle Scholar
  55. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Center Uppsala UniversityGoogle Scholar
  56. Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24:581–583CrossRefPubMedGoogle Scholar
  57. Olson PD, Littlewood DTJ, Griffiths D, Kennedy CR, Arme C (2002) Evidence for the co-existence of separate strains or species of Ligula in Lough Neagh, Northern Ireland. J Helminthol 76:171–174CrossRefPubMedGoogle Scholar
  58. Perea S, Böhme M, Zupancic P, Freyhof J, Sanda R, Özulug M, Abdoli A, Doadrio I (2010) Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10:265CrossRefPubMedGoogle Scholar
  59. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288CrossRefGoogle Scholar
  60. Posada D (2004) Collapse (Version 1.2). A tool for collapsing sequences to haplotypes.
  61. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  62. Poulin R (2007) Evolutionary ecology of parasites, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  63. Prenter J, Macneil C, Dick JTA, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390CrossRefPubMedGoogle Scholar
  64. Rambaut A, Drummond A (2005) Tracer. Institute of Evolutionary Biology, University of Edinburgh.
  65. Rushton SP, Lurz PWW, Gurnell J, Nettleton P, Bruemmer C, Shirley MDF, Sainsbury AW (2006) Disease threats posed by alien species: the role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol Infect 134:521–533CrossRefPubMedGoogle Scholar
  66. Sasal P, Taraschewski H, Grondin H, Valade P, Wielgoss S, Moravec F (2008) Parasite communities in eels of the Island of Reunion (Indian Ocean): a lesson in parasite introduction. Parasitol Res 102:1343–1350CrossRefPubMedGoogle Scholar
  67. Štefka J, Gilleard JS, Grillo V, Hypša V (2007) Isolation and characterization of microsatellite loci in the tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea). Mol Ecol Notes 7:794–796CrossRefGoogle Scholar
  68. Štefka J, Hypša V, Scholz T (2009) Interplay of host specificity and biogeography in the population structure of a cosmopolitan endoparasite: microsatellite study of Ligula intestinalis (Cestoda). Mol Ecol 18:1187–1206CrossRefPubMedGoogle Scholar
  69. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  70. Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Patrick A, Brennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905CrossRefPubMedGoogle Scholar
  71. Therriault TW, Orlova MI, Docker MF, Macisaac HJ, Heath DD (2005) Invasion genetics of a freshwater mussel (Dreissena rostriformis bugensis) in eastern Europe: high gene flow and multiple introductions. Heredity 95:16–23CrossRefPubMedGoogle Scholar
  72. Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  73. Van Riper C III, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344CrossRefGoogle Scholar
  74. Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, Muskó IB, Platvoet D, Rigaud T (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116:1941–1953CrossRefGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  76. Wielgoss S, Taraschewski H, Meyer A, Wirth T (2008) Population structure of the parasitic nematode Anguillicola crassus, an invader of declining North Atlantic eel stocks. Mol Ecol 17:3478–3495CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Wafa Bouzid
    • 1
  • Jan Štefka
    • 2
    • 3
  • Lilia Bahri-Sfar
    • 4
  • Peter Beerli
    • 5
  • Géraldine Loot
    • 6
  • Sovan Lek
    • 6
  • Noura Haddaoui
    • 4
  • Václav Hypša
    • 2
  • Tomáš Scholz
    • 2
  • Tahani Dkhil-Abbes
    • 7
  • Rafik Meddour
    • 8
  • Oum Kalthoum Ben Hassine
    • 4
  1. 1.Venoms and Biological Activities Laboratory, EA 4357PRES-Université de Toulouse, Jean-François Champollion University CenterAlbiFrance
  2. 2.Biology Centre ASCR, Institute of Parasitology and Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  3. 3.Entomology DepartmentNatural History MuseumLondonUK
  4. 4.Unité de Recherche Biologie, Ecologie et Parasitologie des organismes AquatiquesFaculté des Sciences de TunisTunisTunisia
  5. 5.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA
  6. 6.Laboratoire Evolution et Diversité BiologiqueU.M.R. CNRS-UPS 5174, Université Paul SabatierToulouse cedex 4France
  7. 7.Laboratoire d’AquacultureINSTMSalammbôTunisia
  8. 8.Laboratoire de Pisciculture et Pathologie, Département des Sciences de la Mer, Faculté des SciencesUniversité Badji Mokhtar AnnabaAnnabaAlgeria

Personalised recommendations