Biological Invasions

, Volume 15, Issue 6, pp 1377–1390 | Cite as

Intercontinental dispersal of Typha angustifolia and T. latifolia between Europe and North America has implications for Typha invasions

  • Claudia Ciotir
  • Heather Kirk
  • Jeffrey R. Row
  • Joanna R. Freeland
Original Paper


The full effects of biological invasions may be underestimated in many areas because of cryptogenic species, which are those that can be identified as neither native nor introduced. In North America, the cattails Typha latifolia, T. angustifolia, and their hybrid T. × glauca are increasingly aggressive invaders of wetlands. There is a widespread belief that T. latifolia is native to North America and T. angustifolia was introduced from Europe, although there has so far been little empirical support for the latter claim. We used microsatellite data and chloroplast DNA sequences to compare T. latifolia and T. angustifolia genotypes from eastern North America and Europe. In both species, our data revealed a high level of genetic similarity between North American and European populations that is indicative of relatively recent intercontinental dispersal. More specifically, the most likely scenario suggested by Approximate Bayesian Computation was an introduction of T. angustifolia from Europe to North America. We discuss the potential importance of our findings in the context of hybridization, novel genomes, and increasingly invasive behaviour in North American Typha spp.


Intercontinental dispersal Typha angustifolia Typha latifolia Hybridization Microsatellites Chloroplast DNA Phylogeography 



Many thanks to Doug Ball, Nicole Vachon, Jennifer Paul, Amber Olson, Jennifer Coughlan, Eva Conrad and William Conrad for providing some of the samples that were used in this study and/or assisting with field work. Financial support for this work came from the Natural Science and Engineering Research Council and Trent University.

Supplementary material

10530_2012_377_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Ball D, Freeland JR (2013) Synchronous flowering times and asymmetrical hybridization in Typha latifolia and T. angustifolia in northeastern North America. Aquat Bot 104:224–227Google Scholar
  2. Blakeslee AMH, Byers JE, Lesser MP (2008) Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea’s North American origin. Mol Ecol 17:3684–3696PubMedCrossRefGoogle Scholar
  3. Blum MGB, Francois O (2010) Non-linear regression models for Approximate Bayesian Computation. Stat Comp 20:63–73CrossRefGoogle Scholar
  4. Boers AM, Zedler JB (2008) Stabilized water levels and Typha invasiveness. Wetlands 28:676–685CrossRefGoogle Scholar
  5. Bremer K (2000) Early Cretaceous lineages of monocot flowering plants. Proc Natl Acad Sci USA 97:4707–4711PubMedCrossRefGoogle Scholar
  6. Carlton JT (1996) Biological invasions and cryptogenic species. Ecology 77:1653–1655CrossRefGoogle Scholar
  7. Cerny M, Hebert PDN (1999) Intercontinental allozyme differentiation among four holarctic Daphnia species. Limnol Oceanog 44:1381–1387CrossRefGoogle Scholar
  8. Colautti RI, Manca M, Viljanen M, Ketelaars HA, Bürgi H, Macisaac HJ, Heath DD (2005) Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol 14:1869–1879PubMedCrossRefGoogle Scholar
  9. Collinson ME (1983) Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Bot J Linn Soc 86:177–225CrossRefGoogle Scholar
  10. Cowie RH (2001) Decline and homogenization of Pacific faunas: the land snails of American Samoa. Biol Cons 99:207–222CrossRefGoogle Scholar
  11. Csillery K, Francois O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol 3:475–479CrossRefGoogle Scholar
  12. Cuenoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89:132–144PubMedCrossRefGoogle Scholar
  13. Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Inv 11:1107–1119CrossRefGoogle Scholar
  14. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431PubMedCrossRefGoogle Scholar
  15. Dickerman JA, Wetzel RG (1985) Clonal growth in Typha latifolia: population dynamics and demography of the ramets. J Ecol 73:535–552CrossRefGoogle Scholar
  16. Dugle JR, Copps TP (1972) Pollen characteristics of Manitoba cattails. Can Field Nat 86:33–40Google Scholar
  17. Dupont L, Viard F, Davis MH et al (2011) Pathways of spread of the introduced ascidian Styela clava (Tunicata) in Northern Europe, as revealed by microsatellite markers. Biol Inv 12:2707–2721CrossRefGoogle Scholar
  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  20. Excoffier L, Estoup A, Cornuet JM (2005) Bayesian analysis of an admixture model with mutations and arbitrarily linked markers. Genetics 169:1727–1738PubMedCrossRefGoogle Scholar
  21. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  22. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  23. Finkelstein SA, Peros MC, Davis AM (2005) Late Holocene paleoenvironmental change in a Great Lakes coastal wetland: integrating pollen and diatom datasets. J Paleolimnol 33:1–12CrossRefGoogle Scholar
  24. François O, Blum MGB, Jakobsson M et al (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genet 4(5):e1000075PubMedCrossRefGoogle Scholar
  25. Freeland JR, Vachon N (2012) Repetitive sequences in phylogeographic inference: a reply to Saltonstall and Lambertini (2012). Mol Ecol Res 12:586–589CrossRefGoogle Scholar
  26. Freeland JR, Romualdi C, Okamura B (2000) Gene flow and genetic diversity: a comparison of freshwater bryozoan populations in Europe and North America. Heredity 85:498–508PubMedCrossRefGoogle Scholar
  27. Galatowitsch SM, Anderson NO, Ascher PD (1999) Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755CrossRefGoogle Scholar
  28. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  29. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Nat Acad Sci USA 99:11256–11259PubMedCrossRefGoogle Scholar
  30. Geller JB, Walton ED, Grosholz ED et al (1997) Cryptic invasions of the crab Carcinus detected by molecular phylogeography. Mol Ecol 6:901–906PubMedCrossRefGoogle Scholar
  31. Goldstein JC, Ruiz-Linares A, Cavalli-Sforza LL et al (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. PNAS 92:6723–6727PubMedCrossRefGoogle Scholar
  32. Grace JB, Harrison JS (1986) The Biology of Canadian Weeds.73. Typha latifolia L, Typha angustifolia L and Typha × glauca Godr. Can J Plant Sci 66:361–379CrossRefGoogle Scholar
  33. Grapputo A, Boman S, Lindstrom L, Lyytinen A, Mappes J (2005) The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol Ecol 14:4207–4219PubMedCrossRefGoogle Scholar
  34. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Inv 10:483–506CrossRefGoogle Scholar
  35. Herrick BM, Wolf AT (2005) Invasive plant species in diked vs. undiked Great Lakes wetlands. J Gt Lakes Res 31:277–287CrossRefGoogle Scholar
  36. Holdredge C, Bertness MD, von Wettberg E, Silliman B (2010) Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119:1776–1784CrossRefGoogle Scholar
  37. Holsbeek G, Mergeay J, Volckaert FAM, De Meester L (2010) Genetic detection of multiple exotic water frog species in Belgium illustrates the need for monitoring and immediate action. Biol Inv 12:1459–1463CrossRefGoogle Scholar
  38. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt) Engelm]. Theor Appl Genet 86:927–934CrossRefGoogle Scholar
  39. Jost L (2008) G(ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  40. Kanarek AR, Webb CT (2010) Allee effects, adaptive evolution, and invasion success. Evol Appl 3:122–135CrossRefGoogle Scholar
  41. Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731PubMedCrossRefGoogle Scholar
  42. Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988PubMedCrossRefGoogle Scholar
  43. Kirk H, Connelly C, Freeland JR (2011a) Molecular genetic data reveal hybridization between Typha angustifolia and T. latifolia across a broad spatial scale in eastern North America. Aquat Bot 95:189–193CrossRefGoogle Scholar
  44. Kirk H, Paul J, Straka J, Freeland JR (2011b) Long distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed in north-eastern North America. Am J Bot 98:1180–1190PubMedGoogle Scholar
  45. Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, Losos JB (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Cons Biol 21:1612–1625CrossRefGoogle Scholar
  46. Kuehn MM, Minor JE, White BN (1999) An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Mol Ecol 8:1981–1990PubMedCrossRefGoogle Scholar
  47. Laval G, Excoffier L (2004) SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487PubMedCrossRefGoogle Scholar
  48. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. PNAS 104:3883–3888PubMedCrossRefGoogle Scholar
  49. Markert JA, Champlin DM, Gutjahr-Gobell R, Grear JS, Kuhn A, McGreevy TJ, Roth A, Bagley MJ, Nacci DE (2010) Population genetic diversity and fitness in multiple environments. BMC Evol Biol 10:205Google Scholar
  50. McKenzie-Gopsill A, Kirk H, Van Drunen W, Freeland JR, Dorken ME (2012) No evidence for niche segregation in a North American cattail (Typha) species complex. Ecol Evol 2:952–961PubMedCrossRefGoogle Scholar
  51. Mozdzer TJ, Zieman JC (2010) Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J Ecol 98:451–458CrossRefGoogle Scholar
  52. Nei M, Li WH (1979) Mathematical model for studying the genetic variation in terms of restriction endonucleoases. PNAS 76:5269–5273PubMedCrossRefGoogle Scholar
  53. Nies G, Reusch TBH (2005) Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant. J Evol Biol 18:19–26PubMedCrossRefGoogle Scholar
  54. Olson A, Paul J, Freeland JR (2009) Habitat preferences of cattail species and hybrids (Typha spp.) in eastern Canada. Aquat Bot 91:67–70CrossRefGoogle Scholar
  55. Orloci L (1978) Multivariate analysis in vegetation research. Junk, The HagueGoogle Scholar
  56. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  57. Plut K, Paul J, Ciotir C, Freeland JR (2011) Origin of non-native Phragmites australis in North America, a common wetland invader. Fund Appl Limnol 179(2):121–129CrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  59. Pujol B, Pannell JR (2008) Reduced responses to selection after species range expansion. Science 321:96PubMedCrossRefGoogle Scholar
  60. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B-Biol Sci 273:2453–2459CrossRefGoogle Scholar
  62. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  63. Ruiz GM, Fofonoff P, Hines AH, Grosholz ED (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnol Oceanog 44:950–972CrossRefGoogle Scholar
  64. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136PubMedCrossRefGoogle Scholar
  65. Sawada M, Viau AE, Gajewski K (2003) The biogeography of aquatic macrophytes in North America since the last glacial maximum. J Biogeogr 30:999–1017CrossRefGoogle Scholar
  66. Schaal BA, Gaskin JF, Caicedo AL (2003) Phylogeography, haplotype trees, and invasive plant species. J Hered 94:197–204PubMedCrossRefGoogle Scholar
  67. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Inv 11:1093–1105CrossRefGoogle Scholar
  68. Schrey AW, Grispo M, Awad M, Cook MB, McCoy ED, Mushinsky HR, Albayrak T, Bensch S, Burke T, Butler LK, Dor R, Fokidis HB, Jensen H, Imboma T, Kessler-Rios MM, Marzal A, Stewart IR, Westerdahl H, Westneat DF, Zehtindjiev P, Martin LB (2011) Broad-scale latitudinal patterns of genetic diversity among native European and introduced house sparrow (Passer domesticus) populations. Mol Ecol 20:1133–1143PubMedCrossRefGoogle Scholar
  69. Selbo SM, Snow AA (2004) The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquat Bot 78:361–369CrossRefGoogle Scholar
  70. Shih JG, Finkelstein SA (2008) Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in Eastern North America derived from herbarium and pollen records. Wetlands 28:1–16CrossRefGoogle Scholar
  71. Simberloff D (2009) The Role of Propagule Pressure in Biological Invasions. Ann Rev Ecol Evol Syst 40:81–102CrossRefGoogle Scholar
  72. Smith SG (1967) Experimental and natural hybrids in North american Typha (Typhaceae). Am Mid Nat 78:257–287CrossRefGoogle Scholar
  73. Snow AA, Travis SE, Wildova R, Fér T, Sweeney PM, Marburger JE, Windels S, Kubátová B, Goldberg DE, Mutegi E (2010) Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. Am J Bot 97:2061–2067PubMedCrossRefGoogle Scholar
  74. Stuckey RL, Salamon DP (1987) Typha angustifolia in North America—a foreigner masquerading as a native. Ohio J Sci 87:4Google Scholar
  75. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  76. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  77. Travis SE, Marburger JE, Windels S, Kubátová B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. J Ecol 98:7–16CrossRefGoogle Scholar
  78. Trebitz AS, Taylor DL (2007) Exotic and invasive aquatic plants in great lakes coastal wetlands: distribution and relation to watershed land use and plant richness and cover. J Gt Lakes Res 33:705–721CrossRefGoogle Scholar
  79. Tsyusko-Omeltchenko OV, Schable NA, Smith MH, Glenn TC (2003) Microsatellite loci isolated from narrow-leaved cattail Typha angustifolia. Mol Ecol Notes 3:535–538CrossRefGoogle Scholar
  80. Tuchman NC, Larkin DJ, Geddes P, Wildova R, Jankowski K, Goldberg DE (2009) Patterns of environmental change associated with Typha × glauca invasion in a Great Lakes coastal wetland. Wetlands 29:964–975CrossRefGoogle Scholar
  81. Tulbure MG, Johnston CA, Auger DL (2007) Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. J Gt Lakes Res 33:269–279CrossRefGoogle Scholar
  82. Turgeon J, Tayeh A, Facon B, Lombaert E, De Clercq P, Berkvens N, Lundgren JG, Estoup A (2011) Experimental evidence for the phenotypic impact of admixture between wild and biocontrol Asian ladybird (Harmonia axyridis) involved in the European invasion. J Evol Biol 24:1044–1052PubMedCrossRefGoogle Scholar
  83. Vaccaro LE, Bedford BL, Johnston CA (2009) Litter accumulation promotes dominance of invasive species of cattails (Typha Spp.) in Lake Ontario wetlands. Wetlands 29:1036–1048CrossRefGoogle Scholar
  84. Vachon N, Freeland JR (2011) Phylogeographic inferences from chloroplast DNA: quantifying the effects of mutations in repetitive and non-repetitive sequences. Mol Ecol Res 11:279–285CrossRefGoogle Scholar
  85. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B-Biol Sci 278:2–8CrossRefGoogle Scholar
  86. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JSC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260PubMedCrossRefGoogle Scholar
  87. Wasson K, Zabin CJ, Bedinger L, Diaz MC, Pearse JS (2001) Biological invasions of estuaries without international shipping: the importance of intraregional transport. Biol Conserv 102:143–153CrossRefGoogle Scholar
  88. Wegmann D, Leuenberger C, Neuenschwander S, Excoffier L (2010) ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC Bioinf 11:116Google Scholar
  89. Westergaard KB, Alsos IG, Popp M, Engelskjøn T, Flatberg KI, Brochmann C (2011) Glacial survival may matter after all: nunatak signatures in the rare European populations of two west-arctic species. Mol Ecol 20:376–393PubMedCrossRefGoogle Scholar
  90. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Div Dist 14:569–580CrossRefGoogle Scholar
  91. Wilcox DA, Kowalski KP, Hoare HL et al (2008) Cattail invasion of sedge/grass meadows in Lake Ontario: photointerpretation analysis of sixteen wetlands over five decades. J Gt Lakes Res 34:301–323CrossRefGoogle Scholar
  92. Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Claudia Ciotir
    • 1
  • Heather Kirk
    • 2
    • 3
  • Jeffrey R. Row
    • 3
  • Joanna R. Freeland
    • 3
  1. 1.Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughCanada
  2. 2.Institut für Systematische BotanikUniversity of ZurichZurichSwitzerland
  3. 3.Department of BiologyTrent UniversityPeterboroughCanada

Personalised recommendations