Advertisement

Biological Invasions

, Volume 15, Issue 6, pp 1355–1366 | Cite as

Fluctuating salinity improves survival of the invasive freshwater golden mussel at high salinity: implications for the introduction of aquatic species through estuarine ports

  • Francisco Sylvester
  • Daniel H. Cataldo
  • Carolina Notaro
  • Demetrio Boltovskoy
Original Paper

Abstract

In order to evaluate the resistance to salinity as a factor enhancing freshwater invasiveness, we assessed the tolerance of the mussel Limnoperna fortunei to salinity conditions mimicking changes in an estuary. We tested mussel mortality in 30-day exposures to constant and fluctuating salinities at different temperatures in the laboratory. Test conditions simulated different seasons of the year and locations with increasing influence of marine waters in Río de la Plata, Argentina. Significant mortality (31 % after 30 days) was observed at a constant salinity of 2 ‰, increasing to 45 and 57 % at 5 and 10 ‰, respectively. In contrast, considerably greater tolerances were observed when conditions in the experimental chamber fluctuated between salt water and fresh water. No significant mortality was observed in mussels exposed to a salinity cycle with abrupt salinity changes ranging 1–23 ‰ (mean 2.68 ‰) over a month. Tolerance to this type of regime was unaffected by different temperatures within ambient ranges. Tests at constant salinity underestimate the tolerance of this and probably other freshwater nonindigenous species (NIS) to short-term saltwater exposures. Estuarine ports account for ca. 2/3 of non-marine ports globally, thus constituting donor and recipient hotspots for the spread of NIS propagules into continental aquatic ecosystems via shipping vectors. The tolerance of L. fortunei to estuarine conditions likely contributes to the species’ remarkable invasive success. These results highlight the need to determine causes of invasiveness and to study NIS traits not alone but in combination with transport network properties.

Keywords

Limnoperna fortunei Salinity tolerance Invasiveness Ports Estuaries Propagule transport 

Notes

Acknowledgments

We are grateful to Raúl Guerrero for putting at our disposal the salinity record produced by the FREPLATA project, and to Diego Giberto for information and samples of L. fortunei collected in the Río de la Plata mixohaline area. Gerardo Cueto helped with the statistical analysis. Erik Thuesen, Ladd Johnson, and two anonymous reviewers provided very helpful comments on this work. This work was financed by grants from the University of Buenos Aires (UBA X-020 and 20020100100035) and from the Argentine Agencia Nacional de Promoción Científica y Tecnológica (PICT 2007 1968) to DB.

Supplementary material

10530_2012_373_MOESM1_ESM.xls (26 kb)
Supplementary material 1 (XLS 39 kb)

References

  1. Angonesi LG, Da Rosa NG, Bemvenuti CE (2008) Tolerance to salinities shocks of the invasive mussel Limnoperna fortunei under experimental conditions. Iheringia Sér Zool 98:66–69CrossRefGoogle Scholar
  2. Bailey SA, Duggan IC, Van Overdijk CDA, Johengen TH, Reid DF, MacIsaac HJ (2004) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshw Biol 49:286–295CrossRefGoogle Scholar
  3. Bailey SA, Deneau MG, Jean L, Wiley CJ, Leung B, MacIsaac HJ (2011) Evaluating efficacy of an environmental policy to prevent biological invasions. Environ Sci Technol 45:2554–2561PubMedCrossRefGoogle Scholar
  4. Barbosa FG, Melo AS (2009) Predictive model of survival of the Golden Mussel (Limnoperna fortunei) in relation to variations of salinity in the Laguna dos Patos, RS, Brazil. Biota Neotropica 9:407–412CrossRefGoogle Scholar
  5. Barnard C, Frenette JJ, Vincent WF (2003) Planktonic invaders of the St. Lawrence estuarine transition zone: environmental factors controlling the distribution of zebra mussel veligers. Can J Fish Aquat Sci 60:1245–1257CrossRefGoogle Scholar
  6. Berezina NA (2003) Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34:261–266CrossRefGoogle Scholar
  7. Boltovskoy D, Correa N, Cataldo D, Sylvester F (2006) Dispersion and impact of invasive freshwater bivalves: Limnoperna fortunei in the Río de la Plata watershed and beyond. Biol Invasions 8:947–963CrossRefGoogle Scholar
  8. Boltovskoy D, Karatayev AY, Burlakova L, Cataldo D, Karatayev VA, Sylvester F, Mariñelarena A (2009a) Significant ecosystem-wide effects of the swiftly spreading invasive freshwater bivalve Limnoperna fortunei. Hydrobiologia 636:271–284CrossRefGoogle Scholar
  9. Boltovskoy D, Sylvester F, Otaegui AY, Leytes V, Cataldo D (2009b) Environmental modulation of the reproductive activity of the invasive mussel Limnoperna fortunei in South America. Austral Ecol 37:719–730CrossRefGoogle Scholar
  10. Bradie JN, Bailey SA, van der Velde G, MacIsaac HJ (2010) Brine-induced mortality of non-indigenous invertebrates in residual ballast water. Mar Environ Res 70:395–401PubMedCrossRefGoogle Scholar
  11. Brandt RAM (1974) The non-marine aquatic Mollusca of Thailand. Archiv Molluskenkd 105:1–423Google Scholar
  12. Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2011) Assessing invasion risk across taxa and habitats: life stage as a determinant of invasion success. Diversity Distrib 17:593–602CrossRefGoogle Scholar
  13. Byrne RA, Dietz TH (2006) Ionic and acid–base consequences of exposure to increased salinity in the zebra mussel, Dreissena polymorpha. Biol Bull 211:66–75PubMedCrossRefGoogle Scholar
  14. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 61:78–82CrossRefGoogle Scholar
  15. Casper AF (2007) Chapitre III. Life at the edge: physiological constraints on freshwater mussels (Dreissena polymorpha Pallas and D. bugensis Andrusov) in a fluvial estuary. In: Contraintes écophysiologiques de la distribution d’une espèce: divergence parmi les populations sympatriques de Dreissena polymorpha (Pallas) et de D. bugensis (Andrusov) dans l’estuaire et du fleuve Saint-Laurent. PhD theses available from http://archimede.bibl.ulaval.ca/archimede/fichiers/24295/24295.html. Accessed 31 Oct 2012
  16. Cataldo D, Boltovskoy D, Pose M (2003) Toxicity of chlorine and three nonoxidizing molluscicides to the pest mussel Limnoperna fortunei. J Am Water Works Assoc 95:66–78Google Scholar
  17. Cataldo D, Vinocur A, O′Farrell I, Paolucci E, Leites V, Boltovskoy D (2012) The introduced bivalve Limnoperna fortunei boosts Microcystis growth in Salto Grande reservoir (Argentina): evidence from mesocosm experiments. Hydrobiologia 680:25–38CrossRefGoogle Scholar
  18. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define invasive species. Divers Distrib 10:135–141CrossRefGoogle Scholar
  19. Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037CrossRefGoogle Scholar
  20. Deaton LE, Derby JGS, Subhedar N, Greenberg MJ (1989) Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. J Exp Mar Biol Ecol 133:67–79CrossRefGoogle Scholar
  21. Devin S, Beisel JN (2007) Biological and ecological characteristics of invasive species: a gammarid study. Biol Invasions 9:13–24CrossRefGoogle Scholar
  22. Dietz TH, Wilcox SJ, Byrne RA, Lynn JW, Silverman H (1996) Osmotic and ionic regulation of north american zebra mussels (Dreissena polymorpha). Am Zool 36:364–372Google Scholar
  23. Drake JM, Lodge DM (2004) Global hot spots of biological invasions: evaluating options for ballast-water management. Proc R Soc B 271:575–580PubMedCrossRefGoogle Scholar
  24. Ellis S, MacIsaac HJ (2009) Salinity tolerance of Great Lakes invaders. Freshw Biol 54:77–89CrossRefGoogle Scholar
  25. Floerl O, Inglis GJ, Dey K, Smith A (2009) The importance of transport hubs in stepping-stone invasions. J Appl Ecol 46:37–45CrossRefGoogle Scholar
  26. Giberto DA, Sardiña P (2009) Mytella charruana D’Orbigny 1842 y Limnoperna fortunei (Dunker, 1857) (Bivalvia: Mytilidae) en la zona mixohalina del Río de la Plata: ¿bancos residuales o futuras poblaciones locales? VII Jornadas Nacionales de Ciencias del Mar, 30 November–4 December 2009, Bahía Blanca, ArgentinaGoogle Scholar
  27. Gordon DR, Gantz CA (2011) Risk Assessment for invasiveness differs for aquatic and terrestrial plant species. Biol Invasions 13:1829–1842CrossRefGoogle Scholar
  28. Guerrero RA, Piola AR, Molinari GN, Osiroff AP, Jáuregui SI (2010) Climatología de temperatura y salinidad en el Río de la Plata y su frente marítimo. Argentina-Uruguay. Instituto Nacional de Investigación y Desarrollo Pesquero, Secretaría de Agricultura, Ganadería y Pesca, Mar del Plata, ArgentinaGoogle Scholar
  29. Huang Z, Li C, Zhang L, Li F, Zheng C (1981) The distribution of fouling organisms in Changjiang river estuary. Oceanol Limnol Sin 12:531–537Google Scholar
  30. Hui C, Richardson DM, Robertson MP, Wilson JRU, Yates CJ (2011) Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness. Divers Distrib 17:872–883CrossRefGoogle Scholar
  31. IMO—International Maritime Organization (2004) International convention for the control and management of ships’ ballast water and sediments. Adopted 13 Feb 2004Google Scholar
  32. Jørgensen CB (1990) Bivalve filter feeding: Hydrodynamics, bioenergetics, physiology and ecology. Olsen and Olsen, FredensborgGoogle Scholar
  33. Karatayev AY, Burlakova LE, Padilla DK (1998) Physical factors that limit the distribution and abundance of Dreissena polymorpha (Pall.). J Shellfish Res 17:1219–1235Google Scholar
  34. Karatayev AY, Burlakova LE, Padilla DK, Mastitsky SE, Olenin S (2009) Invaders are not a random selection of species. Biol Invasions 11:2009–2019CrossRefGoogle Scholar
  35. Karatayev AY, Burlakova LE, Karatayev VA, Boltovskoy D (2010) Limnoperna fortunei versus Dreissena polymorpha: population densities and benthic community impacts of two invasive freshwater bivalves. J Shellfish Res 29:975–984CrossRefGoogle Scholar
  36. Keller RP, Drake JM, Drew MB, Lodge DM (2011) Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers Distrib 17:93–102CrossRefGoogle Scholar
  37. Kilgour BW, Mackie GL, Baker MA, Keppel R (1994) Effects of salinity on the condition and survival of zebra mussels (Dreissena polymorpha). Estuaries 17:385–393CrossRefGoogle Scholar
  38. Morton B (1977) The population dynamics of Limnoperna fortunei (Dunker 1857) (Bivalvia: Mytilacea) in Plover Cove Reservoir, Hong Kong. Malacologia 16:165–182Google Scholar
  39. Muirhead JR, MacIsaac HJ (2005) Development of inland lakes as hubs in an invasion network. J Appl Ecol 42:80–90CrossRefGoogle Scholar
  40. Oliveira MD, Hamilton SK, Jacobi CM (2010) Forecasting the expansion of the invasive golden mussel Limnoperna fortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal wetland of Brazil. Aquat Inv 5:59–73CrossRefGoogle Scholar
  41. Orlova MI, Panov VE (2004) Establishment of the zebra mussel, Dreissena polymorpha (Pallas), in the Neva Estuary (Gulf of Finland, Baltic Sea): distribution, population structure and possible impact on local unionid bivalves. Hydrobiologia 514:207–217CrossRefGoogle Scholar
  42. Rajagopal S, Van Der Velde G, Van Der Gaag M, Jenner HA (2003) How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res 37:329–338PubMedCrossRefGoogle Scholar
  43. Ricciardi A (1998) Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13:97–106CrossRefGoogle Scholar
  44. Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632Google Scholar
  45. Saint Lawrence Seaway Development Corporation (2008) Seaway regulations and rules. Code of federal regulations 33-CFR Part 401, 2008Google Scholar
  46. Strayer DL (2006) The benthic animal communities of the tidal-freshwater Hudson River estuary. In: Levinton JS, Waldman JR (eds) The Hudson River estuary. Cambridge University Press, New York, pp 266–278CrossRefGoogle Scholar
  47. Strayer DL, Smith LC (1993) Distribution of the zebra mussel (Dreissena polymorpha) in estuaries and brackish waters. In: Nalepa TF, Schloesser D (eds) Zebra mussels biology, impacts, and control. Lewis Publishers, Boca Raton, pp 715–728Google Scholar
  48. Sylvester F, MacIsaac HJ (2010) Is vessel hull fouling an invasion threat to the Great Lakes? Divers Distrib 16:132–143CrossRefGoogle Scholar
  49. Sylvester F, Kalaci O, Leung B, Lacoursière-Roussel A, Murray CC, Choi FM, Bravo MA, Therriault TW, MacIsaac HJ (2011) Hull fouling as an invasion vector: can simple models explain a complex problem? J Appl Ecol 48:415–423CrossRefGoogle Scholar
  50. Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245PubMedCrossRefGoogle Scholar
  51. Walton WC (1996) Occurrence of zebra mussel (Dreissena polymorpha) in the oligohaline Hudson River, New York. Estuaries 19:612–618CrossRefGoogle Scholar
  52. Wilcox SJ, Dietz TH (1998) Salinity tolerance of the freshwater bivalve Dreissena polymorpha (Pallas, 1771) (Bivalvia, Dreissenidae). Nautilus 111:143–148Google Scholar
  53. Wright DA, Setzler-Hamilton EM, Magee JA, Kennedy VS, Mcininch SP (1996) Effect of salinity and temperature on survival and development of young zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels. Estuaries 19:19–628Google Scholar
  54. Yuan W, Walters LJ, Schneider KR, Hoffman EA (2010) Exploring the survival threshold: a study of salinity tolerance of the nonnative mussel Mytella charruana. J Shellfish Res 29:15–422Google Scholar
  55. Zalewski A, Michalska-Parda A, Ratkiewicz M, Kozakiewicz M, Bartoszewicz M, Brzeziński M (2011) High mitochondrial DNA diversity of an introduced alien carnivore: comparison of feral and ranch American mink Neovison vison in Poland. Divers Distrib 17:57–768CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Francisco Sylvester
    • 1
    • 2
  • Daniel H. Cataldo
    • 1
    • 2
    • 3
  • Carolina Notaro
    • 1
  • Demetrio Boltovskoy
    • 1
    • 2
    • 3
  1. 1.Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina

Personalised recommendations