Biological Invasions

, Volume 13, Issue 8, pp 1901–1915 | Cite as

Invasiveness of an introduced species: the role of hybridization and ecological constraints

  • E. Luquet
  • C. Vorburger
  • F. Hervant
  • P. Joly
  • B. Kaufmann
  • D. S. Schmeller
  • J. P. Léna
  • O. Grolet
  • L. Konecny
  • S. Plénet
Original Paper


Introduced species are confronted with new environments to which they need to adapt. However, the ecological success of an introduced species is generally difficult to predict, especially when hybridizations may be involved in the invasion success. In western Europe, the lake frog Pelophylax ridibundus appears to be particularly successful. A reason for this species’ success might be the presence of the invader’s genetic material prior to the introduction in the form of a hybrid between P. ridibundus and a second indigenous water frog species. These hybrids reproduce by hybridogenesis, only transmitting the ridibundus genome to gametes and backcrossing with the indigenous species (i.e. P. lessonae). This reproductive system allows the hybrid to be independent from P. ridibundus, and allows the ridibundus genome to be more widely spread than the species itself. Matings among hybrids produce newly formed P. ridibundus offspring (N), if the genomes are compatible. Therefore, we hypothesize that hybridogenesis increases the invasiveness of P. ridibundus (1) by enhancing propagule pressure through N individuals, and/or (2) by increasing adaptation of invaders to the native water frogs’ habitat through hybrid-derived ridibundus genomes that are locally adapted. We find support for the first hypothesis because a notable fraction of N tadpoles is viable. However, in our semi-natural experiments they did not outperform ridibundus tadpoles in the native water frogs’ habitat, nor did they differ physiologically. This does not support the second hypothesis and highlights ecological constraints on the invasion. However, we cannot rule out that these constraints may fall with ongoing selection, making a replacement of indigenous species highly probable in the future.


Water frogs Hybridogenesis Propagule pressure Local adaptation Ecophysiological tolerance Larval performance 



We thank S. Kosellek and J. Cote for their help with field and laboratory works, as well as M. C. Fisher and D. C. Woodhams for linguistic corrections. Constructive comments on the manuscript were provided by an anonymous reviewer. This study was made possible by partnerships with Fondation Pierre Vérots (Saint-Jean-de-Thurigneux, Ain, France) and pumping site (Zone de captage “Crépieux-Charmy”, Villeurbanne, France) and was supported by grants from French Environment Ministry (program INVABIO).


  1. Akin C, Bilgin CC, Beerli P, Westaway R, Ohst T, Litvinchuk SN, Uzzell T, Bilgin M, Hotz H, Guex GD, Plotner J (2010) Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr 37:2111–2124CrossRefGoogle Scholar
  2. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66CrossRefGoogle Scholar
  3. Altwegg R, Reyer HU (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57:872–882PubMedGoogle Scholar
  4. Arano B, Llorente GA, Herrero P, Sanchiz B (1994) Current studies on Iberian water frogs. Zoologica Poloniae 39:365–375Google Scholar
  5. Arioli M, Jakob C, Reyer HU (2010) Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol Ecol 19:1814–1828PubMedCrossRefGoogle Scholar
  6. Barney JN, Whitlow TH (2008) A unifying framework for biological invasions: the state factor model. Biol Invasions 10:259–272CrossRefGoogle Scholar
  7. Berger L (1983) Western Palearctic water frogs (Amphibia, Ranidae): systematics, genetics and population compositions. Experientia 39:27–130Google Scholar
  8. Berger L, Uzzell T (1977) Vitality and growth of progeny from different egg size classes of Rana esculenta L. (Amphibia, Salientia). Zoologica Poloniae pp 291–317Google Scholar
  9. Berger L, Uzzell T, Hotz H (1988) Sex determination and sex ratios in western Palearctic water frogs: XX and XY female hybrids in the Pannonian Basin? Proc Acad Nat Sci Phila 140:220–239Google Scholar
  10. Berven KA (1990) Factors Affecting Population Fluctuations in Larval and Adult Stages of the Wood Frog (Rana Sylvatica). Ecology 71:1599–1608CrossRefGoogle Scholar
  11. Binkert J, Borner P, Chen PS (1982) Rana esculenta complex–an experimental-analysis of lethality and hybridogenesis. Experientia 38:1283–1292CrossRefGoogle Scholar
  12. Christiansen DG, Reyer HU (2009) From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63:1754–1768PubMedCrossRefGoogle Scholar
  13. Christiansen DG, Fog K, Pedersen V, Boomsma JJ (2005) Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution 59:1348–1361PubMedGoogle Scholar
  14. Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornemental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119CrossRefGoogle Scholar
  15. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedCrossRefGoogle Scholar
  16. Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535PubMedCrossRefGoogle Scholar
  17. Facon B, Genton BJ, Shykoff J, Jarne P, Estoup A, David P (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135PubMedCrossRefGoogle Scholar
  18. Frost DR, Grant T, Faivovich R, Bain RH, Haas A, Haddad CFB, De Sa RO, Channing A, Wilkinson M, Donnellan SC (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:8–370CrossRefGoogle Scholar
  19. Garner TWJ, Gautschi B, Rothlisberger S, Reyer HU (2000) A set of CA repeat microsatellite markers derived from the pool frog, Rana lessonae. Mol Ecol 9:2173–2175PubMedCrossRefGoogle Scholar
  20. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  21. Graf JD, Polls Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates, pp 298–302, New York State Museum Bulletin 466, Albany, USAGoogle Scholar
  22. Guex GD, Hotz H, Semlitsch RD (2002) Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution 56:1036–1044PubMedGoogle Scholar
  23. Günther R (1990) Die Wasserfrösche Europas (Anura–Froschlurche). Die Neue Brehm Bücherei, A. Ziemsen Verlag, Wittenberg LutherstadtGoogle Scholar
  24. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Evol Syst 31:139–162CrossRefGoogle Scholar
  25. Hervant F, Mathieu J, Garin D, Fréminet A (1995) Behavioral, ventilatory and metabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargus rhenorhodanensis and the epigean Gammarus fossarum (Crustacea: Amphipoda). Physiol Zool 68:223–244Google Scholar
  26. Holsbeek G, Jooris R (2010) Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol Invasions 12:1–13Google Scholar
  27. Holsbeek G, Mergeay J, Hotz H, Plötner J, Volckaert FAM, De Meester L (2008) A cryptic invasion within an invasion and widespread introgression in the European water frog complex: consequences of uncontrolled commercial trade and weak international legislation. Mol Ecol 17:5023–5035PubMedCrossRefGoogle Scholar
  28. Hotz H, Mancino G, Bucci-Innocenti S, Ragghianti M, Berger L, Uzzell T (1985) Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J Exp Zool 236:199–210CrossRefGoogle Scholar
  29. Hotz H, Beerli P, Spolsky C (1992) Mitochondrial-DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids. Mol Biol Evol 9:610–620PubMedGoogle Scholar
  30. Kelly DW, Muirhead JR, Heath DD, Macisaac HJ (2006) Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol 15:3641–3653PubMedCrossRefGoogle Scholar
  31. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  32. Kondrashov AS, Houle D (1994) Genotype-environment interactions and the estimation of the genomic mutation-rate in Drosophila-melanogaster. Proc R Soc Lond B Biol Sci 258:221–227CrossRefGoogle Scholar
  33. Lalouette L, Kaufmann B, Konecny L, Renault D, Douady CJ (2010) Characterization and PCR multiplexing of 14 new polymorphic microsatellite loci for the invasive subantarctic carabid Merizodus soledadinus (Coleoptera: Carabidae). Cons Genet Resour 1:455–458CrossRefGoogle Scholar
  34. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  35. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMedCrossRefGoogle Scholar
  36. Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, OxfordGoogle Scholar
  37. Lutschinger G (1988) Zur Uberwinterung der Wasserfrösche in den Donau- und Marchauen. In: Günther R, Klewen R (ed) Beiträge zur Biologie und Bibliographie (1960–1987) der europäischen Wasserfrösche, Jb. Feldherp. Beiheft 1, Verlag für Okologie u. Faunistik, Duisburg, pp. 153–160Google Scholar
  38. Mallet J (2005) Hybridization as an invasion of the genorne. Trends Ecol Evol 20:229–237PubMedCrossRefGoogle Scholar
  39. Mezhzherin SV, Morozov-leonov SI, Nekrasova OD (2004) Natural transfer of nuclear genes in hybrid populations of green frogs Rana esculenta L., 1758 complex: space-time analysis of the phenomenon. Genetika 40:1646–1653Google Scholar
  40. Milinski M (1994) Hybridogenetic frogs on an evolutionary dead-end road. Trends Ecol Evol 9:62PubMedCrossRefGoogle Scholar
  41. Pagano A, Schmeller DS (1999) Is recombination less negligible than previously described in hybridogenetic water frogs? In: Miaud C, Guyétant R (eds) 9th O.G. Meeting–current studies in herpetology. SEH, Le Bourget du Lac, France, pp 351–356Google Scholar
  42. Pagano A, Joly P, Hotz H (1997) Taxon composition and genetic variation of water frogs in the mid-Rhone floodplain. C R Acad Sci Ser III Sci Vie 320:759–766Google Scholar
  43. Pagano A, Crochet PA, Graf JD, Joly P, Lode T (2001) Distribution and habitat use of water frog hybrid complexes in France. Glob Ecol Biogeogr 10:433–441CrossRefGoogle Scholar
  44. Pagano A, Dubois A, Lesbarreres D, Lode T (2003) Frog alien species: a way for genetic invasion? C R Biol 326:S85–S92PubMedCrossRefGoogle Scholar
  45. Pagano A, Lesbarrères D, Crivelli A, Veith M, Lodé T, O’Hara R, Schmeller DS (2008) Geographical and ecological distributions of frog hemiclones suggest occurrence of both “General Purpose Genotype” and “Frozen Niche Variation” clones. J Zool Syst Evol Res 46:162–168CrossRefGoogle Scholar
  46. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkGoogle Scholar
  47. Plénet S, Joly P, Pagano A (1998) Is habitat requirement by an oxygen-dependent frog (Rana ridibunda) governed by its larval stage? Arch Hydrobiol 143:107–119Google Scholar
  48. Plénet S, Hervant F, Joly P (2000a) Ecology of the hybridogenetic Rana esculenta complex: differential oxygen requirements of tadpoles. Evol Ecol 14:13–23CrossRefGoogle Scholar
  49. Plénet S, Pagano A, Joly P, Fouillet P (2000b) Variation of plastic responses to oxygen availability within the hybridogenetic Rana esculenta complex. J Evol Biol 13:20–28CrossRefGoogle Scholar
  50. Plénet S, Joly P, Hervant F, Fromont E, Grolet O (2005) Are hybridogenetic complexes structured by habitat in water frogs? J Evol Biol 18:1575–1586PubMedCrossRefGoogle Scholar
  51. Plénet S, Joly P, Schmeller DS (2009) Nouvelle combinaison génétique par hybridation et accroissement du potentiel invasif, suite à une introduction. Genetic diversity of an introduced frog and ecological risks of species introduction. In: Barbault R, Atramentowiczs M (eds) Les invasions biologiques, une question de natures et de sociétés, INRA, Versailles, pp 24–25Google Scholar
  52. Plötner J (2005) Die westpaläarktischen Wasserfrösche-von Märtyren der Wissenschaft zur biologischen Sensation. Laurenti-Verlag, BielefeldGoogle Scholar
  53. Plötner J, Ohst T, Böhme W, Schreiber R (2001) Divergence in mitochondrial DNA of Near Eastern water frogs with special reference to the systematic status of Cypriote and Anatolian populations (Anura, Ranidae). Amphib-Reptilia 22:397–412CrossRefGoogle Scholar
  54. Plötner J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex GD, Reyer HU, Hotz H (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol 21:668–681PubMedCrossRefGoogle Scholar
  55. Plötner J, Uzzell T, Beerli P, Akin C, Bilgin CC, Haefeli C, Ohst T, Köhler F, Schreiber R, Guex G-D, Litvinchuk AN, Westaway R, Reyer H-U, Hotz H (2010) Genetic divergence and evolution of reproductive isolation in eastern Mediterranean water frogs. In: Glaubrecht M (ed) Evolution in action. Case studies in adaptive radiation and the origin of biodiversity. Special volume from the SPP 1127 “Radiations: Genesis of Biological diversity” of the DFG. Springer, Berlin, pp 373–403Google Scholar
  56. Räsänen K, Laurila A, Merilä J (2003) Carry-over effects of embryonic acid conditions on development and growth of Rana temporaria tadpoles. Freshwater Biol 47:19–30CrossRefGoogle Scholar
  57. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  58. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464PubMedCrossRefGoogle Scholar
  59. Rybacki M, Berger L (2001) Types of water frog populations (Rana esculenta complex) in Poland. Mitteilungen aus dem Museum fuer Naturkunde in Berlin Zoologische Reihe 77:51–57Google Scholar
  60. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  61. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Annual Meeting of the American-Botanical-Society, Salt Lake City, UT, pp 1093–1105Google Scholar
  62. Schmeller DS (2004) Tying ecology and genetics of hemiclonally reproducing waterfrogs (Rana, Anura). Ann Zool Fenn 41:681–687Google Scholar
  63. Schmeller DS, Seitz A, Crivelli A, Veith M (2005) Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc R Soc Biol Sci Ser B 272:1625–1631CrossRefGoogle Scholar
  64. Schmeller DS, Pagano A, Plénet S, Veith M (2007) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332Google Scholar
  65. Schultz RJ (1969) Hybridization, unisexuality, and polyploidy in the teleost Poeciliopis (Poeciliidae) and other vertebrates. Am Nat 103:605–619CrossRefGoogle Scholar
  66. Shabalina SA, Yampolsky LY, Kondrashov AS (1997) Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci USA 94:13034–13039PubMedCrossRefGoogle Scholar
  67. Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68:344–350CrossRefGoogle Scholar
  68. Snijders TAB (2005) Fixed and random effects. In: Everitt BS, Howell DC (eds) Encyclopedia of statistics in behavioral science, vol 2. Wiley, Chicester, pp 664–665Google Scholar
  69. Som C, Reyer HU (2006) Hemiclonal reproduction slows down the Muller’s ratchet in the hybridogenetic frog Rana esculenta. J Evol Biol 20:650–660CrossRefGoogle Scholar
  70. Spolsky C, Uzzell T (1984) Natural interspecies transfer of mitochondrial DNA in amphibians. Proc Natl Acad Sci USA 81:5802–5805PubMedCrossRefGoogle Scholar
  71. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360PubMedCrossRefGoogle Scholar
  72. Szafraniec K, Borts RH, Korona R (2001) Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:1107–1112PubMedCrossRefGoogle Scholar
  73. R Development Core Team (2007) R: A language and environment for statistical computing. Austria, Vienna: R foundation for statistical computing. ISBN 3-900051-07-0 (
  74. Tunner HG, Nopp H (1979) Heterosis in the common European water frog. Naturwissenschaften 66:268–269PubMedCrossRefGoogle Scholar
  75. Uzzell T, Berger L (1975) Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc Acad Nat Sci Phila 127:13–24Google Scholar
  76. Uzzell T, Günther R, Berger L (1977) Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc Acad Nat Sci Phila 128:147–171Google Scholar
  77. Vorburger C (2001a) Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution 55:2319–2332PubMedGoogle Scholar
  78. Vorburger C (2001b) Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. J Evol Biol 14:602–610CrossRefGoogle Scholar
  79. Vorburger C (2001c) Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes. Ecol Lett 4:628–636CrossRefGoogle Scholar
  80. Vorburger C, Reyer HU (2003) A genetic mechanism of species replacement in European waterfrogs? Cons Genet 4:141–155CrossRefGoogle Scholar
  81. Vorburger C, Schmeller DS, Hotz H, Guex GD, Reyer HU (2009) Masked damage: mutational load in hemiclonal water frogs. In: Van Dijk P, Martens K, Schoen I (eds) Lost sex—the evolutionary biology of parthenogenesis. Springer, Netherlands, pp 433–446Google Scholar
  82. Zeisset I, Beebee TJC (2003) Population genetics of a successful invader: the marsh frog Rana ridibunda in Britain. Mol Ecol 12:639–646PubMedCrossRefGoogle Scholar
  83. Zeisset I, Rowe G, Beebee TJC (2000) Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessoane. Mol Ecol 9:1173–1174PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • E. Luquet
    • 1
  • C. Vorburger
    • 2
    • 3
  • F. Hervant
    • 1
  • P. Joly
    • 1
  • B. Kaufmann
    • 1
  • D. S. Schmeller
    • 4
  • J. P. Léna
    • 1
  • O. Grolet
    • 1
  • L. Konecny
    • 1
  • S. Plénet
    • 1
  1. 1.CNRS, UMR5023 Ecologie des Hydrosystèmes Naturels et AnthropisésVilleurbanneFrance
  2. 2.Institute of Integrative Biology, ETH ZürichZürichSwitzerland
  3. 3.EAWAG, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  4. 4.Station d’Ecologie Experimentale du CNRS à MoulisSaint GironsFrance

Personalised recommendations