Advertisement

Biological Invasions

, Volume 13, Issue 3, pp 605–620 | Cite as

Impact of the invasive moss Campylopus introflexus on carabid beetles (Coleoptera: Carabidae) and spiders (Araneae) in acidic coastal dunes at the southern Baltic Sea

  • Jens Schirmel
  • Lars Timler
  • Sascha Buchholz
Original Paper

Abstract

Campylopus introflexus is an invasive moss in Europe and North America that is adapted to acidic and nutrient-poor sandy soils with sparse vegetation. In habitats like acidic coastal dunes (grey dunes) it can reach high densities, build dense carpets and modify habitat conditions. While the impact of the moss invasion on the vegetation is well analyzed, there is a lack of knowledge regarding possible effects on arthropods. In the present study we analyzed the impact of Campylopus introflexus on the ground-dwelling arthropods carabid beetles and spiders, as both taxa are known to be useful indicator taxa even on a small-scale level. In 2009 we compared species composition in a) invaded, moss-rich (C. introflexus) and b) native, lichen-rich (Cladonia spp.) acidic coastal dunes by using pitfall traps. A total of 1,846 carabid beetles (39 species) and 2,682 spiders (66 species) were caught. Species richness of both taxa and activity densities of spiders were lower in invaded sites. Species assemblages of carabids and spiders differed clearly between the two habitat types and single species were displaced by the moss encroachment. Phytophagous carabid beetles, web-building spiders and wolf spiders were more abundant in native, lichen-rich sites. Shifts in species composition can be explained by differences in the vegetation structure, microclimate conditions and most likely a reduced food supply in invaded sites. By forming dense carpets and covering large areas, the moss invasion strongly alters typical arthropod assemblages of endangered and protected (EU-directive) acidic coastal dunes.

Keywords

Microclimate Moss-encroachment Neophytic moss Species richness Vegetation structure 

Notes

Acknowledgments

The authors would like to thank J. Schalajda, R. Baumgartner and two anonymous reviewers for helpful comments on an earlier version of the manuscript. The study was conducted as part of the research project “Biodiversity, Ecology and Management of Coastal Habitats of the Baltic Sea” and financially supported by the Bauer-Hollmann-Foundation. We are grateful to the national park “Vorpommersche Boddenlandschaft” for the permission to conduct the study in the protected area.

References

  1. Almquist S (1971) Resistance to desiccation in some dune-living spiders. Oikos 22:225–229CrossRefGoogle Scholar
  2. Almquist S (1973) Habitat selection by spiders on Coastal Sand Dunes in Scania, Sweden. Entomol Scand 4:134–154Google Scholar
  3. Almquist S (2005) Swedish Araneae, part 1: families Atypidae to Hahniidae (Linyphiidae excluded). Insect Syst Evol Suppl 62:1–284Google Scholar
  4. Bates AJ, Sadler JP, Perry JN, Fowles AP (2007) The microspatial distribution of beetles (Coleoptera) on exposed riverine sediments (ERS). Eur J Entomol 104:479–487Google Scholar
  5. Bauer L (ed) (1972) Handbuch der Naturschutzgebiete der Deutschen Demokratischen Republik. Band 1: Bezirke Rostock, Schwerin und Neubrandenburg. Urania-Verlag, LeipzigGoogle Scholar
  6. Beals ML (2006) Understanding community structure: a data-driven multivariate approach. Oecologia 150:484–495CrossRefPubMedGoogle Scholar
  7. Bell JR, Haughton AJ, Cullen WR, Wheater CP (1997) The zonation and ecology of sand-dune spider community. In: Proceedings of the 17th European colloquium of arachnology. pp 261–266Google Scholar
  8. Bellmann H (1997) Zum Vorkommen dünenspezifischer Arthropoden in Mitteleuropa. Mitt Dtsch Ges Allg Angew Ent 11:839–842Google Scholar
  9. Biermann R, Daniëls FJA (1997) Changes in a lichen-rich dry sand grassland vegetation with special reference to lichen synusiae and Campylopus introflexus. Phytocoenologia 27:257–273Google Scholar
  10. Biermann R, Daniëls FJA (2001) Vegetationsdynamik im Spergulo-Corynephoretum unter besonderer Berücksichtigung des neophytischen Laubmooses Campylopus introflexus. Braunschweiger Geobot Arb 8:27–37Google Scholar
  11. Bonn A, Kleinwächter M (1999) Microhabitat distribution of spider and ground beetle assemblages (Araneae, Carabidae) on frequently inundated river banks of the River Elbe. Z Ökologie Naturschutz 8:109–123Google Scholar
  12. Bonn A, Schröder B (2001) Habitat models and their transfer for single- and multi-species groups: a case study of carabids in an alluvial forest. Ecography 24:483–496CrossRefGoogle Scholar
  13. Bonte D, Maelfait J-P, Hoffmann M (2000) Seasonal and diurnal migration patterns of the spider (Araneae) fauna of coastal grey dunes. Ekológia (Bratislava) 19(4):5–16Google Scholar
  14. Bonte D, Criel P, Van Thournout I, Maelfait J-P (2003) Regional and local variation of spider assemblages (Aranae) from coastal grey dunes along the North Sea. J Biogeogr 30:901–911. doi: 10.1046/j.1365-2699.2003.00885.x CrossRefGoogle Scholar
  15. Buchholz S (2010) Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv. doi: 10.1007/s10531-010-9860-7
  16. Buchholz S, Kreuels M (2009) Diversity and distribution of spiders (Arachnida: Araneae) in dry ecosystems of North Rhine-Westphalia. Arachnol Mitt 38:8–28Google Scholar
  17. Buchholz H, Hannig K, Schirmel J (2009) Ground beetle assemblages of peat bog remnants in Northwest Germany (Coleoptera: Carabidae). Entomol Generalis 32(2):127–144Google Scholar
  18. Bultmann TL, DeWitt DJ (2008) Effect of an invasive ground cover plant on the abundance and diversity of a forest floor spider assemblage. Biol Invasions 10:749–756. doi: 10.1007/s10530-007-9168-z CrossRefGoogle Scholar
  19. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  20. Chao A (2005) Species estimation and applications. In: Balakrishnan N, Read CB, Vidakovic B (eds) Encyclopedia of statistical sciences, vol 12, 2nd edn. Wiley, New York, pp 7907–7916Google Scholar
  21. Cole LJ, McCracken DI, Dennis P, Downie IS, Griffin AL, Foster GN, Murphy KJ, Waterhouse T (2002) Relationships between agricultural management and ecological groups of ground beetles (Coleoptera: Carabidae) on Scottish farmland. Agric Ecosyst Environ 93:323–336. doi: 10.1016/S0167-8809(01)00333-4 CrossRefGoogle Scholar
  22. De Mas E, Chust G, Pretus JL, Ribera C (2009) Spatial modelling of spider biodiversity: matters of scale. Biodivers Conserv 18:1945–1962CrossRefGoogle Scholar
  23. De Vries W, Klijn JA, Kros H (1994) Simulation of the long-term impact of atmospheric deposition on dune ecosystems in the Netherlands. J Appl Ecol 31:59–73CrossRefGoogle Scholar
  24. Desender KRC (1996) Diversity and Dynamics of coastal dune carabids. Ann Zool Fennici 33:65–75Google Scholar
  25. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, StuttgartGoogle Scholar
  26. Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Global Ecol Biogeogr 16:440–448CrossRefGoogle Scholar
  27. Equihua M, Usher MB (1993) Impact of carpets of the invasive moss Campylopus introflexus on Calluna vulgaris regeneration. J Ecol 81:359–365CrossRefGoogle Scholar
  28. Finch OD (2008) Webspinnen, Weberknechte und Pseudoskorpione der Ostfriesischen Inseln (Arachnida: Araneae, Opilionida, Pseudoscorpionida). Schrift R Nationalpark Niedersächs Wattenmeer 11:103–112Google Scholar
  29. Frahm JP (1980) Synopsis of the genus Campylopus in North America north of Mexico. Bryologist 83:570–588CrossRefGoogle Scholar
  30. Frahm JP (2001) Biologie der Moose. Spektrum, BerlinGoogle Scholar
  31. Frey W, Lösch R (1998) Lehrbuch der Geobotanik: Pflanze und Vegetation in Raum und Zeit. Gustav Fischer, StuttgartGoogle Scholar
  32. Grill A, Knoflach B, Cleary DFR, Kati V (2005) Butterfly, spider, and plant communities in different land-use types in Sardinia, Italy. Biodivers Conserv 14:1281–1300CrossRefGoogle Scholar
  33. Gu W, Sang W, Liang H, Axmacher JC (2008) Effects of Crofton weed Ageratina adenophora on assemblages of Carabidae (Coleoptera) in the Yunnan Province, South China. Agric Ecosyst Environ 124:173–178. doi: 10.1016/j.agee.2007.09.004 CrossRefGoogle Scholar
  34. Hansen AK, Ortega YK, Six DL (2009) Comparison of Ground Beetle (Coleoptera: Carabidae) Assemblages in Rocky Mountain Savannas Invaded and Un-invaded by an Exotic Forb, Spotted Knapweed. Northwest Sci 83(4):348–360. doi: 10.3955/046.083.0406 CrossRefGoogle Scholar
  35. Hasse T (2005) Charakterisierung der Sukzessionsstadien im Spergulo-Corynephoretum (Silbergrasfluren) unter besonderer Berücksichtigung der Flechten. Tuexenia 25:407–424Google Scholar
  36. Hasse T (2007) Campylopus introflexus invasion in a dune grassland: Succession, disturbance and relevance of existing plant invader concepts. Herzogia 20:305–315Google Scholar
  37. Hassel K, Söderström L (2005) The expansion of the alien mosses Orthodontium lineare and Campylopus introflexus in Britain and continental Europe. J Hattori Bot Lab 97:183–193Google Scholar
  38. Heijmans MMPD, Arp WJ, Chapin FS (2004) Controls on moss evaporation in a boreal black spruce forest. Glob Biogeochem Cycles 18:1524–1530CrossRefGoogle Scholar
  39. Heimer S, Nentwig W (1991) Spinnen Mitteleuropas: ein Bestimmungsbuch. Parey, BerlinGoogle Scholar
  40. Horvath R, Magura T, Szinetar C, Tothmeresz B (2009) Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric Ecosyst Environ 130:16–22. doi: 10.1016/j.agee.2008.11.011 CrossRefGoogle Scholar
  41. Hsieh Y-L, Lin Y-S, Tso I-M (2003) Ground spider diversity in the Kenting uplifted coral reef forest, Taiwan: a comparison between habitats receiving various disturbances. Biodivers Conserv 12:2173–2194. doi: 10.1023/A:1024591311548 CrossRefGoogle Scholar
  42. Huber C, Schulze C, Baumgarten M (2007) The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany. Biodivers Conserv 16:3653–3680CrossRefGoogle Scholar
  43. Irmler U, Gürlich S (2004) Die ökologische Einordnung der Laufkäfer (Coleoptera: Carabidae) in Schleswig-Holstein. Faunist-Ökol Mitt 32:1–117Google Scholar
  44. Jiménez-Valverde A, Lobo JM (2007) Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: climate and altitude vs. habitat structure. Ecol Ent 32:113–122CrossRefGoogle Scholar
  45. Juen A, Traugott M (2004) Spatial distribution of epigaeic predators in a small field in relation to season and surrounding crops. Agric Ecosyst Environ 103:613–620CrossRefGoogle Scholar
  46. Jukes MR, Peace AJ, Ferris R (2001) Carabid beetle communities associated with coniferous plantations in Britain: the influence of site, ground vegetation and stand structure. For Ecol Manage 148:271–286CrossRefGoogle Scholar
  47. Ketner-Oostra R, Sykora KV (2004) Decline of lichen-diversity in calcium-poor coastal dune vegetation since the 1970s, related to grass and moss encroachment. Phytocoenologia 34:521–549. doi: 10.1127/0340-269X/2004/0034-0521 CrossRefGoogle Scholar
  48. Ketner-Oostra R, Sykora KV (2008) Vegetation change in a lichen-rich inland drift sand area in the Netherlands. Phytocoenologia 38:267–286. doi: 10.1127/0340-269X/2008/0038-0267 CrossRefGoogle Scholar
  49. Kratochwil A, Schwabe A (2001) Ökologie der Lebensgemeinschaften. Ulmer, StuttgartGoogle Scholar
  50. Lang A (2000) The pitfalls of pitfalls: a comparison of pitfall trap catches and absolute density estimates of epigeal invertebrate predators in arable land. J Pest Sci 73:99–106Google Scholar
  51. Lange OL (1954) Einige Messungen zum Wärmehaushalt poikilohydrer Flechten und Moose. Arch Meteorol Geophys Bioklimatol Serie B 5(2):182–190CrossRefGoogle Scholar
  52. Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Ann Rev Entomol 41:231–256. doi: 10.1146/annurev.en.41.010196.001311 Google Scholar
  53. Maes D, Bonte D (2006) Using distribution patterns of five threatened invertebrates in a highly fragmented dune landscape to develop a multispecies conservation approach. Biol Conserv 133:490–499. doi: 10.1016/j.biocon.2006.08.001 CrossRefGoogle Scholar
  54. Maes D, Ghesquiere A, Logie M, Bonte D (2006) Habitat use and mobility of two threatened coastal dune insects: implications for conservation. J Insect Conserv 10:105–115. doi: 10.1007/s10841-006-6287-2 CrossRefGoogle Scholar
  55. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  56. Martin D (1993) Rote Liste der gefährdeten Spinnen (Araneae) Mecklenburg-Vorpommerns. In: Mecklenburg-Vorpommern U (ed) Rote Liste der gefährdeten Spinnen (Araneae) Mecklenburg-Vorpommerns. pp 1–41Google Scholar
  57. Mazia CN, Chaneton EJ, Kitzberger T (2006) Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. J Arid Environ 67:177–194. doi: 10.1016/j.jaridenv.2006.02.006 CrossRefGoogle Scholar
  58. Meissner A (1998) Die Bedeutung der Raumstruktur für die Habitatwahl von Lauf und Kurzflügelkäfern (Coleoptera: Carabidae, Staphylinidae). Freilandökologische und experimentelle Untersuchung einer Niedermoorzönose. Dissertation, University BerlinGoogle Scholar
  59. Mgobozi MP, Somers MJ, Dippenaar-Schoeman AS (2008) Spider responses to alien plant invasion: the effect of short- and long-term Chromolaena odorata invasion and management. J Appl Ecol 45:1189–1197. doi: 10.1111/j.1365-2664.2008.01486.x Google Scholar
  60. Mossakowski D, Främbs H (1993) Carabiden als Indikatoren der Auswirkungen von Wiedervernässerungsmaßnahmen auf die Fauna im Leegmoor. Nat Schutz Landsch Pfl Nieders 29:79–114Google Scholar
  61. Muff P, Kropf C, Frick H, Nentwig W, Schmidt-Entling MH (2009) Co-existence of divergent communities at natural boundaries: spider (Arachnida: Araneae) diversity across an alpine timberline. Insect Conserv Diver 2:36–44CrossRefGoogle Scholar
  62. Muller S, Dutoit T, Alard D, Grévilliot F (1998) Restoration and rehabilitation of species-rich grassland ecosystems in France: a review. Restor Ecol 6:94–101. doi: 10.1046/j.1526-100x.1998.06112.x CrossRefGoogle Scholar
  63. Müller-Motzfeld G (2004) Xerotherme Laufkäfer in Deutschland—Verbreitung und Gefährdung. Angew Carabidol 3:27–44Google Scholar
  64. Müller-Motzfeld G (2006) Band 2, Adephaga 1: Carabidae (Laufkäfer). In: Freude H, Harde KW, Lohse GA, Klausnitzer B (eds) Die Käfer Mitteleuropas. Spektrum-Verlag, HeidelbergGoogle Scholar
  65. Müller-Motzfeld G, Schmidt J (2008) Rote Liste der Laufkäfer Mecklenburg-Vorpommerns. Turo Print GmbH, SchwerinGoogle Scholar
  66. Negro M, Isaia M, Palestrini C, Rolando A (2009) The impact of forest ski-pistes on diversity of ground-dwelling arthropods and small mammals in the Alps. Biodivers Conserv. doi: 10.1007/s10531-009-9608-4
  67. New TR (1998) Invertebrate surveys for conservation. Oxford University Press, OxfordGoogle Scholar
  68. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MH, Wagner H (2008) The vegan Package Version 1.15-0. Online at: http://cran.r-project.org/, http://vegan.r-forge.r-project.org/ (15/02/2010)
  69. Petillon J, Ysnel F, Canard A, Lefeuvre J-C (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: response of spider populations. Biol Conserv 126:103–117. doi: 10.1016/j.biocon.2005.05.003 CrossRefGoogle Scholar
  70. Platnick NI (2009) The world spider catalog, Version 10.0. American Museum of Natural History. Online at: http://research.amnh.org/entomology/spiders/catalog/index.html (05/11/2009)
  71. Pott R (1995) Die Pflanzengesellschaften Deutschlands. Ulmer, StuttgartGoogle Scholar
  72. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  73. Reinhard H (1962) Klimatologie. Atlas der Bezirke Rostock, Schwerin und Neubrandenburg. VEB Topographischer Dienst, SchwerinGoogle Scholar
  74. Remke E, Brouwer E, Kooijman A, Blindow I, Esselink H, Roelofs JGM (2009) Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environ Pollut 157:792–800. doi: 10.1016/j.envpol.2008.11.020 CrossRefPubMedGoogle Scholar
  75. Ribera I, Foster GN, Downie IS, McCracken DI, Abernethy VJ (1999a) A comparative study of the morphology and life traits of Scottish ground beetles (Coleoptera, Carabidae). Annal Zool Fennici 36:21–37Google Scholar
  76. Ribera I, McCracken DI, Foster GN, Downie IS, Abernethy VJ (1999b) Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land. J Zoology 247:1–18. doi: 10.1017/S0952836999001016 CrossRefGoogle Scholar
  77. Richards PW (1963) Campylopus introflexus (Hedw.) and C. polytrichoides De Not. in the British Islands: a preliminary account. Trans Brit Bryol Soc 3:404–417Google Scholar
  78. Riksen M, Ketner-Oostra R, van Turnhout C, Nijssen M, Goossens D, Jungerius PD, Spaan W (2006) Will we lose the last active inland drift sands of Western Europe? The origin and development of the inland drift-sand ecotype in the Netherlands. Landsc Ecol 21:431–447. doi: 10.1007/s10980-005-2895-6 CrossRefGoogle Scholar
  79. Roberts MJ (1987) The spiders of Great Britain and Ireland. Volume 2: Linyphiidae and checklist. Harley Books, ColchesterGoogle Scholar
  80. Roberts MJ (1996) Spiders of Britain and Northern Europe. Collins, LondonGoogle Scholar
  81. Scheidler M (1990) Influence of habitat structure and vegetation architecture on spiders. Zool Anz 225:333–340Google Scholar
  82. Ssymank A, Hauke U, Rückriem C, Schröder E (1998) Das europäische Schutzgebietssystem NATURA 2000. Schrift R Landsch Pfl Nat Schutz 53:1–560Google Scholar
  83. Staudt A (2009) Nachweiskarten der Spinnentiere Deutschlands. Online at http://www.spiderling.de/arages
  84. Thiele HU (1977) Carabid beetles in their environments. A study on habitat selection by adaptations in physiology and behaviour. Springer, HeidelbergGoogle Scholar
  85. Topp W, Kappes H, Rogers F (2008) Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynouria spp.) invasion. Biol Invasions 10:381–390. doi: 10.1007/s10530-007-9137-6 CrossRefGoogle Scholar
  86. Trost M (2004) Differenzierung der Carabidenfauna mitteldeutscher Xerothermhabitate mit besonderer Berücksichtigung Sachsen-Anhalts. Angew Carabidol 3:95–114Google Scholar
  87. Turin H (2000) De Nederlandse Loopkevers. Verspreiding en oecologie (Coleoptera: Carabidae). European Invertebrate Survey Nederland, Leiden/NederlandGoogle Scholar
  88. Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman & Hall, New York, pp 325–348Google Scholar
  89. Van der Meulen F, van der Hagen H, Kruijsen B (1987) Campylopus introflexu. Invasion of a moss in Dutch coastal dunes. Proc Kon Ned Acad Wetensch 90:73–80Google Scholar
  90. Venables WN, Ripley BD (2010) Package ‘Mass’. Online at: http://cran.r-project.org/web/packages/MASS/MASS.pdf
  91. Vogels J, Nijssen M, Verberk W, Esselink H (2005) Effects of moss encroachment by Campylopus introflexus on soil-entomofauna of dry-dune grasslands (Violo-corynephoretum). Proc Neth Entomol Soc Meet 16:71–80Google Scholar
  92. Warui CM, Villet MR, Young TP, Jocque R (2005) Influence of grazing by large mammals on the spider community of a Kenyan savanna biome. J Arachnol 33:269–279CrossRefGoogle Scholar
  93. Wirth V (1995) Die Flechten Baden-Württembergs, Teil 1. Ulmer, StuttgartGoogle Scholar
  94. Schirmel J (submitted) Response of the grasshopper Myrmeleotettix maculatus (Orthoptera: Acrididae) to invasion by the exotic moss Campylopus introflexus in acidic coastal dunesGoogle Scholar
  95. Ziesche TM, Roth M (2008) Influence of environmental parameters on smallscale distribution of soil-dwelling spiders in forests: what makes the difference, tree species or microhabitat? For Ecol Manage 255:738–752. doi: 10.1016/j.foreco.2007.09.060 CrossRefGoogle Scholar
  96. Zuur AF, Ieno IN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biological Station Isle of HiddenseeUniversity of GreifswaldIsle of HiddenseeGermany
  2. 2.Department of Biodiversity DynamicsTU BerlinBerlinGermany

Personalised recommendations