Skip to main content

Advertisement

Log in

Semi-submersible rigs: a vector transporting entire marine communities around the world

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

A virtually intact subtropical reef community (14 phyla, 40 families and 62 non-native taxa) was associated with a rig under tow from Brazil that became stranded on the remote island of Tristan da Cunha. This exposes rigs as a significant vector spreading alien marine organisms, and includes the first records of free-swimming marine finfish populations becoming established after unintentional movement. With relatively trivial effort, a pre-tow clean would have obviated the need to salvage and dispose of the rig (undertaken largely to address concerns about invasive species), at a cost of ~US$20 million. Our findings show that towing biofouled structures across biogeographic boundaries present unexcelled opportunities for invasion to a wide diversity of marine species. Better control and management of this vector is required urgently. Simultaneous, unintentional introductions of viable populations of multiple marine organisms are rare events, and we develop a basic framework for rapid assessment of invasion risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Angel A, Cooper J (2006) A review of the impacts of introduced rodents on the islands of Tristan da Cunha and Gough. Royal Society for the Protection of Birds, Sandy

    Google Scholar 

  • Bax N, Carlton JT, Mathews-Amos A, Haedrich RL, Howarth FG, Purcell JE et al (2001) The control of biological invasions in the world’s oceans. Conserv Biol 15:1234–1246. doi:10.1046/j.1523-1739.2001.99487.x

    Article  Google Scholar 

  • Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. doi:10.1016/S0308-597X(03)00041-1

    Article  Google Scholar 

  • BirdLife-International (2004) Threatened birds of the world 2004 (CD-ROM). BirdLife International, Cambridge

    Google Scholar 

  • Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958. doi:10.1126/science.1101617

    Article  CAS  PubMed  Google Scholar 

  • Carlton TJ (1987) Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bull Mar Sci 41:452–465

    Google Scholar 

  • Cohen AN, Carlton TJ (1998) Accelerated invasion rate in a highly invaded estuary. Science 279:555–558. doi:10.1126/science.279.5350.555

    Article  CAS  PubMed  Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405. doi:10.1016/S0169-5347(99)01683-3

    Article  PubMed  Google Scholar 

  • David GS, Coutinho R, Quagio-Grassioto I, Verani JR (2005) The reproductive biology of Diplodus argenteus (Sparidae) in the coastal upwelling system of Cabo Frio, Rio de Janeiro, Brazil. Afr J Mar Sci 27:439–447

    Google Scholar 

  • de Costa Fernandes F, Raaymakers S, Calixto RJ (2003) Invading mussels threaten Amazon: Globallast–Brazil take action. Aliens Auckl 17:22–23

    Google Scholar 

  • Diamond J (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B Biol Sci 325:469–476

    Article  CAS  PubMed  Google Scholar 

  • Drake J, Lodge D (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. doi:10.1007/s10530-004-8122-6

    Article  Google Scholar 

  • Duncan RP, Blackburn TM (2007) Causes of extinction in island birds. Anim Conserv 10:149–150. doi:10.1111/j.1469-1795.2007.00110.x

    Article  Google Scholar 

  • Everett RA (2000) Patterns and pathways of biological invasions. Trends Ecol Evol 15:177–178. doi:10.1016/S0169-5347(00)01835-8

    Article  Google Scholar 

  • Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–1106. doi:10.1111/j.1365-2699.2004.01044.x

    Article  Google Scholar 

  • Foster BA (1987) Barnacle ecology and adaptation. In: Southward AJ (ed) Barnacle biology. A.A. Balkema, Rotterdam, pp 113–134

    Google Scholar 

  • Froese R, Pauly D (2008) FishBase, World Wide Web electronic publication. In: www.fishbase.org

  • GISP (2005) Training course for Invasive Alien Species. Global Invasive Species Programme (GISP), Cape Town

  • Hayes KR (2002a) Identifying hazards in complex ecological systems. Part 1: fault-tree analysis for biological invasions. Biol Invasions 4:235–245. doi:10.1023/A:1020979914453

    Article  Google Scholar 

  • Hayes KR (2002b) Identifying hazards in complex ecological systems. Part 2: infection modes and effects analysis for biological invasions. Biol Invasions 4:251–261. doi:10.1023/A:1020943231291

    Article  Google Scholar 

  • Hayes K, Barry S (2007) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi:10.1007/s10530-007-9146-5

    Article  Google Scholar 

  • Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17:663–674. doi:10.1890/06-0239

    Article  PubMed  Google Scholar 

  • Hewitt CL, Hayes KR (2002) Risk assessment of marine biological invasions. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution impacts and management. Kluwer, Dordrecht, pp 456–466

    Google Scholar 

  • Hobbs RJ (1989) The nature and effects of disturbance relative to invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Rejmanek FJ, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 389–405

    Google Scholar 

  • Hutchings PA, Hilliard RW, Coles SL (2002) Species introductions and potential for marine pest invasions into tropical marine communities, with special reference to the Indo-Pacific. Pac Sci 56:223–233. doi:10.1353/psc.2002.0017

    Article  Google Scholar 

  • Jones AG, Chown SL, Gaston KJ (2002) Terrestrial invertebrates of Gough Island: an assemblage under threat. Afr Entomol 10:83–91

    Google Scholar 

  • Lewis P, Bergstrom D, Whinam J (2006) Barging in: a temperate marine community travels to the subantarctic. Biol Invasions 8:787–795. doi:10.1007/s10530-005-3837-6

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

    Article  Google Scholar 

  • Meuller J (2007) Jackups and semis still rule. Asian Oil and Gas August (unpaginated)

  • Mooney HA (1999) The Global Invasive Species Program (GISP). Biol Invasions 1:97–98. doi:10.1023/A:1010023129637

    Article  Google Scholar 

  • Morgan D (2005) Resurgent rig market revives transport hopes. Asian Oil and Gas September (unpaginated)

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371. doi:10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2

    Article  Google Scholar 

  • Pimental D (2002) Biological invasions: economic and environmental costs of alien plant, animal and microbe species. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pimm SL, Diamond JM, Reed TM, Russel JG, Verner J (1993) Times to extinction for small populations of large birds. Proc Natl Acad Sci USA 90:10871–10875. doi:10.1073/pnas.90.22.10871

    Article  CAS  PubMed  Google Scholar 

  • Purvis A, Gittleman JL, Colishaw G, Mace G (2000) Predicting extinction risk in declining species. Proc R Soc Lond 267:1947–1952. doi:10.1098/rspb.2000.1234

    Article  CAS  Google Scholar 

  • Rangel CA, Chaves LCT, Monteiro-Neto C (2007) Baseline assessment of the reef fish assemblage from Cagarras Archipelago, Rio de Janeiro, southeastern Brazil. Braz J Oceanogr 55:7–17. doi:10.1590/S1679-87592007000100002

    Article  Google Scholar 

  • Sadler JP (1999) Biodiversity on oceanic islands: a palaeoecological assessment. J Biogeogr 26:75–87. doi:10.1046/j.1365-2699.1999.00285.x

    Article  Google Scholar 

  • Scott S (2006) Stranded production platform Petrobas XXI [sic], Tristan da Cunha. Marine biological survey, October 2006. In: Unpublished report to the Administrator, Tristan da Cunha, p 15

  • Scott S, Andrew TG (2007) Marine life. In: Ryan PG (ed) Field guide to the animals and plants of Tristan da Cunha and Gough Island. Pisces Publications, Newbury, pp 121–146

    Google Scholar 

  • Simberloff D (2000) Extinction-proneness of island species—causes and management implications. Raffles Bull Zool 48:1–9

    Google Scholar 

  • Simberloff D (2001) Eradication of island invasives: practical actions and results achieved. Trends Ecol Evol 16:273–274. doi:10.1016/S0169-5347(01)02154-1

    Article  Google Scholar 

  • Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92. doi:10.1046/j.1523-1739.2003.02028.x

    Article  Google Scholar 

  • Springer VG (1986) Blenniidae. In: Smith MM, Heemstra PC (eds) Smith’s sea fishes. Springer, Berlin, pp 742–755

    Google Scholar 

  • Steadman DW (1995) Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267:1123–1131. doi:10.1126/science.267.5201.1123

    Article  CAS  PubMed  Google Scholar 

  • Thresher RE, Kuris AM (2004) Options for managing invasive marine species. Biol Invasions 6:295–300. doi:10.1023/B:BINV.0000034598.28718.2e

    Article  Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling 19:9–15. doi:10.1080/0892701031000088535

    Article  PubMed  Google Scholar 

  • Wanless RM, Angel A, Cuthbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244. doi:10.1098/rsbl.2007.0120

    Article  PubMed  Google Scholar 

  • Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568. doi:10.1007/s10530-005-5849-7

    Article  Google Scholar 

Download references

Acknowledgments

The Captains and crew of the fishing vessels M.V. Kelso and the M.V. Edinburgh, staff from Ovenstones Agencies and the Salvage Master and members of the Titan salvage crew all provided invaluable support. The Tristan Administrator at the time, Mike Hentley, members of the Island Council and residents of Tristan are thanked for their assistance and hospitality. Peter Holloway worked closely with the second survey team to ensure the success of work above- and below-water. The following assisted with identification: Rob Anderson (algae), Wouter Holleman and Phil Heemstra (fish), Peter Wirtz (invertebrates and fish) and Ashley Kirk-Spriggs (insects).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross M. Wanless.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanless, R.M., Scott, S., Sauer, W.H.H. et al. Semi-submersible rigs: a vector transporting entire marine communities around the world. Biol Invasions 12, 2573–2583 (2010). https://doi.org/10.1007/s10530-009-9666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-009-9666-2

Keywords

Navigation