Advertisement

Biological Invasions

, Volume 12, Issue 8, pp 2573–2583 | Cite as

Semi-submersible rigs: a vector transporting entire marine communities around the world

  • Ross M. Wanless
  • Sue Scott
  • Warwick H. H. Sauer
  • Timothy G. Andrew
  • James P. Glass
  • Brian Godfrey
  • Charles Griffiths
  • Eleanor Yeld
Original Paper

Abstract

A virtually intact subtropical reef community (14 phyla, 40 families and 62 non-native taxa) was associated with a rig under tow from Brazil that became stranded on the remote island of Tristan da Cunha. This exposes rigs as a significant vector spreading alien marine organisms, and includes the first records of free-swimming marine finfish populations becoming established after unintentional movement. With relatively trivial effort, a pre-tow clean would have obviated the need to salvage and dispose of the rig (undertaken largely to address concerns about invasive species), at a cost of ~US$20 million. Our findings show that towing biofouled structures across biogeographic boundaries present unexcelled opportunities for invasion to a wide diversity of marine species. Better control and management of this vector is required urgently. Simultaneous, unintentional introductions of viable populations of multiple marine organisms are rare events, and we develop a basic framework for rapid assessment of invasion risks.

Keywords

Invasive alien marine species Marine environmental management Oil rigs Risk assessment 

Notes

Acknowledgments

The Captains and crew of the fishing vessels M.V. Kelso and the M.V. Edinburgh, staff from Ovenstones Agencies and the Salvage Master and members of the Titan salvage crew all provided invaluable support. The Tristan Administrator at the time, Mike Hentley, members of the Island Council and residents of Tristan are thanked for their assistance and hospitality. Peter Holloway worked closely with the second survey team to ensure the success of work above- and below-water. The following assisted with identification: Rob Anderson (algae), Wouter Holleman and Phil Heemstra (fish), Peter Wirtz (invertebrates and fish) and Ashley Kirk-Spriggs (insects).

References

  1. Angel A, Cooper J (2006) A review of the impacts of introduced rodents on the islands of Tristan da Cunha and Gough. Royal Society for the Protection of Birds, SandyGoogle Scholar
  2. Bax N, Carlton JT, Mathews-Amos A, Haedrich RL, Howarth FG, Purcell JE et al (2001) The control of biological invasions in the world’s oceans. Conserv Biol 15:1234–1246. doi: 10.1046/j.1523-1739.2001.99487.x CrossRefGoogle Scholar
  3. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. doi: 10.1016/S0308-597X(03)00041-1 CrossRefGoogle Scholar
  4. BirdLife-International (2004) Threatened birds of the world 2004 (CD-ROM). BirdLife International, CambridgeGoogle Scholar
  5. Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958. doi: 10.1126/science.1101617 CrossRefPubMedGoogle Scholar
  6. Carlton TJ (1987) Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bull Mar Sci 41:452–465Google Scholar
  7. Cohen AN, Carlton TJ (1998) Accelerated invasion rate in a highly invaded estuary. Science 279:555–558. doi: 10.1126/science.279.5350.555 CrossRefPubMedGoogle Scholar
  8. Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14:405. doi: 10.1016/S0169-5347(99)01683-3 CrossRefPubMedGoogle Scholar
  9. David GS, Coutinho R, Quagio-Grassioto I, Verani JR (2005) The reproductive biology of Diplodus argenteus (Sparidae) in the coastal upwelling system of Cabo Frio, Rio de Janeiro, Brazil. Afr J Mar Sci 27:439–447Google Scholar
  10. de Costa Fernandes F, Raaymakers S, Calixto RJ (2003) Invading mussels threaten Amazon: Globallast–Brazil take action. Aliens Auckl 17:22–23Google Scholar
  11. Diamond J (1989) The present, past and future of human-caused extinctions. Philos Trans R Soc Lond B Biol Sci 325:469–476CrossRefPubMedGoogle Scholar
  12. Drake J, Lodge D (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. doi: 10.1007/s10530-004-8122-6 CrossRefGoogle Scholar
  13. Duncan RP, Blackburn TM (2007) Causes of extinction in island birds. Anim Conserv 10:149–150. doi: 10.1111/j.1469-1795.2007.00110.x CrossRefGoogle Scholar
  14. Everett RA (2000) Patterns and pathways of biological invasions. Trends Ecol Evol 15:177–178. doi: 10.1016/S0169-5347(00)01835-8 CrossRefGoogle Scholar
  15. Ferreira CEL, Floeter SR, Gasparini JL, Ferreira BP, Joyeux JC (2004) Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. J Biogeogr 31:1093–1106. doi: 10.1111/j.1365-2699.2004.01044.x CrossRefGoogle Scholar
  16. Foster BA (1987) Barnacle ecology and adaptation. In: Southward AJ (ed) Barnacle biology. A.A. Balkema, Rotterdam, pp 113–134Google Scholar
  17. Froese R, Pauly D (2008) FishBase, World Wide Web electronic publication. In: www.fishbase.org
  18. GISP (2005) Training course for Invasive Alien Species. Global Invasive Species Programme (GISP), Cape TownGoogle Scholar
  19. Hayes KR (2002a) Identifying hazards in complex ecological systems. Part 1: fault-tree analysis for biological invasions. Biol Invasions 4:235–245. doi: 10.1023/A:1020979914453 CrossRefGoogle Scholar
  20. Hayes KR (2002b) Identifying hazards in complex ecological systems. Part 2: infection modes and effects analysis for biological invasions. Biol Invasions 4:251–261. doi: 10.1023/A:1020943231291 CrossRefGoogle Scholar
  21. Hayes K, Barry S (2007) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi: 10.1007/s10530-007-9146-5 CrossRefGoogle Scholar
  22. Herborg L-M, Jerde CL, Lodge DM, Ruiz GM, MacIsaac HJ (2007) Predicting invasion risk using measures of introduction effort and environmental niche models. Ecol Appl 17:663–674. doi: 10.1890/06-0239 CrossRefPubMedGoogle Scholar
  23. Hewitt CL, Hayes KR (2002) Risk assessment of marine biological invasions. In: Leppakoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe: distribution impacts and management. Kluwer, Dordrecht, pp 456–466Google Scholar
  24. Hobbs RJ (1989) The nature and effects of disturbance relative to invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Rejmanek FJ, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 389–405Google Scholar
  25. Hutchings PA, Hilliard RW, Coles SL (2002) Species introductions and potential for marine pest invasions into tropical marine communities, with special reference to the Indo-Pacific. Pac Sci 56:223–233. doi: 10.1353/psc.2002.0017 CrossRefGoogle Scholar
  26. Jones AG, Chown SL, Gaston KJ (2002) Terrestrial invertebrates of Gough Island: an assemblage under threat. Afr Entomol 10:83–91Google Scholar
  27. Lewis P, Bergstrom D, Whinam J (2006) Barging in: a temperate marine community travels to the subantarctic. Biol Invasions 8:787–795. doi: 10.1007/s10530-005-3837-6 CrossRefGoogle Scholar
  28. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2 CrossRefGoogle Scholar
  29. Meuller J (2007) Jackups and semis still rule. Asian Oil and Gas August (unpaginated)Google Scholar
  30. Mooney HA (1999) The Global Invasive Species Program (GISP). Biol Invasions 1:97–98. doi: 10.1023/A:1010023129637 CrossRefGoogle Scholar
  31. Morgan D (2005) Resurgent rig market revives transport hopes. Asian Oil and Gas September (unpaginated)Google Scholar
  32. Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371. doi: 10.1641/0006-3568(2001)051[0363:PSIUEN]2.0.CO;2 CrossRefGoogle Scholar
  33. Pimental D (2002) Biological invasions: economic and environmental costs of alien plant, animal and microbe species. CRC Press, Boca RatonCrossRefGoogle Scholar
  34. Pimm SL, Diamond JM, Reed TM, Russel JG, Verner J (1993) Times to extinction for small populations of large birds. Proc Natl Acad Sci USA 90:10871–10875. doi: 10.1073/pnas.90.22.10871 CrossRefPubMedGoogle Scholar
  35. Purvis A, Gittleman JL, Colishaw G, Mace G (2000) Predicting extinction risk in declining species. Proc R Soc Lond 267:1947–1952. doi: 10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  36. Rangel CA, Chaves LCT, Monteiro-Neto C (2007) Baseline assessment of the reef fish assemblage from Cagarras Archipelago, Rio de Janeiro, southeastern Brazil. Braz J Oceanogr 55:7–17. doi: 10.1590/S1679-87592007000100002 CrossRefGoogle Scholar
  37. Sadler JP (1999) Biodiversity on oceanic islands: a palaeoecological assessment. J Biogeogr 26:75–87. doi: 10.1046/j.1365-2699.1999.00285.x CrossRefGoogle Scholar
  38. Scott S (2006) Stranded production platform Petrobas XXI [sic], Tristan da Cunha. Marine biological survey, October 2006. In: Unpublished report to the Administrator, Tristan da Cunha, p 15Google Scholar
  39. Scott S, Andrew TG (2007) Marine life. In: Ryan PG (ed) Field guide to the animals and plants of Tristan da Cunha and Gough Island. Pisces Publications, Newbury, pp 121–146Google Scholar
  40. Simberloff D (2000) Extinction-proneness of island species—causes and management implications. Raffles Bull Zool 48:1–9Google Scholar
  41. Simberloff D (2001) Eradication of island invasives: practical actions and results achieved. Trends Ecol Evol 16:273–274. doi: 10.1016/S0169-5347(01)02154-1 CrossRefGoogle Scholar
  42. Simberloff D (2003) How much information on population biology is needed to manage introduced species? Conserv Biol 17:83–92. doi: 10.1046/j.1523-1739.2003.02028.x CrossRefGoogle Scholar
  43. Springer VG (1986) Blenniidae. In: Smith MM, Heemstra PC (eds) Smith’s sea fishes. Springer, Berlin, pp 742–755Google Scholar
  44. Steadman DW (1995) Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267:1123–1131. doi: 10.1126/science.267.5201.1123 CrossRefPubMedGoogle Scholar
  45. Thresher RE, Kuris AM (2004) Options for managing invasive marine species. Biol Invasions 6:295–300. doi: 10.1023/B:BINV.0000034598.28718.2e CrossRefGoogle Scholar
  46. Townsin RL (2003) The ship hull fouling penalty. Biofouling 19:9–15. doi: 10.1080/0892701031000088535 CrossRefPubMedGoogle Scholar
  47. Wanless RM, Angel A, Cuthbert RJ, Hilton GM, Ryan PG (2007) Can predation by invasive mice drive seabird extinctions? Biol Lett 3:241–244. doi: 10.1098/rsbl.2007.0120 CrossRefPubMedGoogle Scholar
  48. Williamson M (2006) Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions 8:1561–1568. doi: 10.1007/s10530-005-5849-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ross M. Wanless
    • 1
  • Sue Scott
    • 2
  • Warwick H. H. Sauer
    • 3
  • Timothy G. Andrew
    • 4
  • James P. Glass
    • 5
  • Brian Godfrey
    • 4
  • Charles Griffiths
    • 6
  • Eleanor Yeld
    • 7
  1. 1.Percy FitzPatrick Institute, DST/NRF Centre of ExcellenceUniversity of Cape TownRondeboschSouth Africa
  2. 2.Strome House, North StromeLochcarronScotland, UK
  3. 3.Department of Ichthyology and Fisheries ScienceRhodes UniversityGrahamstownSouth Africa
  4. 4.Enviro-Fish AfricaGrahamstownSouth Africa
  5. 5.Agriculture and Natural Resources DepartmentTristan da CunhaSouth Atlantic
  6. 6.Centre for Invasion Biology, Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa
  7. 7.Marine Biology Research Centre, Zoology DepartmentUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations