Biological Invasions

, Volume 12, Issue 6, pp 1773–1789 | Cite as

Congener comparison of native (Zostera marina) and introduced (Z. japonica) eelgrass at multiple scales within a Pacific Northwest estuary

  • Jennifer L. Ruesink
  • Jae-Sang Hong
  • Lorena Wisehart
  • Sally D. Hacker
  • Brett R. Dumbauld
  • Margot Hessing-Lewis
  • Alan C. Trimble
Original Paper


A congener comparison of native (Zostera marina) and introduced (Zostera japonica) eelgrasses was conducted in Willapa Bay, Washington, USA. Along intertidal transects, Z. japonica (0.1–1.5 m above mean lower low water [MLLW]) occurred above Z. marina (<0.6 m MLLW). Both species declined in shoot length at higher elevation, but Z. japonica was always shorter (20 vs. 100 cm) and occurred at higher shoot density (>3,800 vs. <360 m−2 in Z. marina). Z. japonica exhibited greater seasonal variation in biomass, with increases supported by both sustained asexual reproduction (rhizome branching) and recruitment from seeds (30 vs. <5% in Z. marina). Z. japonica’s successful invasion appears related to small size and high reproductive output, allowing it to spread quickly in a variable and stressful intertidal environment where competitive effects are low. Based on interannual changes in abundance, the native eelgrass has also recently increased in Willapa Bay, and one hypothesis involves “engineering” of suitable habitat at higher tidal elevations by Z. japonica.


Seagrasses Invasion Life history Estuary Congener Tidal elevation Zostera marina Zostera japonica Willapa Bay Washington Darwin's naturalization hypothesis 



We thank M. Briya, H. Ibrahim, T. Jones, M. Kavanaugh, J. Shaefers, R. Craig, S. Bradley, S. DeAmicis, and L. McCoy. Washington Department of Fish and Wildlife provided temperature data and laboratory space for processing samples. The manuscript benefited from comments by an anonymous reviewer, J. Kaldy and P. Eldridge. The work reported in this publication was supported in part by the Western Regional Aquaculture Center through Grant No. 2003-38500-13198 from the United States Department of Agriculture, Cooperative State Research, Education, and Extension Service. JLR and ACT were funded by the Andrew W. Mellon Foundation.


  1. Almasi KB, Eldridge PM (2008) A dynamic model of an estuarine invasion by a non-native seagrass. Estuar Coast 31:163–176CrossRefGoogle Scholar
  2. Baden SP, Bostrom C (2001) The leaf canopy of seagrass beds: faunal community structure and function in a salinity gradient along the Swedish coast. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecol Stud 151:213–236Google Scholar
  3. Baldwin JR, Lovvorn JR (1994) Expansion of seagrass habitat by the exotic Zostera japonica and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Mar Ecol Prog Ser 103:119–127CrossRefGoogle Scholar
  4. Bando KJ (2006) The roles of competition and disturbance in a marine invasion. Biol Inv 8:755–763CrossRefGoogle Scholar
  5. Borde AM, Thom RM, Rumrill S, Miller LM (2003) Geospatial habitat change analysis in Pacific Northwest estuaries. Estuaries 26:1104–1116CrossRefGoogle Scholar
  6. Bulthuis DA (1995) Distribution of seagrasses in a North Puget Sound estuary: Padilla Bay, Washington, USA. Aquat Bot 50:99–105CrossRefGoogle Scholar
  7. Daehler CC (2001) Darwin’s naturalization hypothesis revisited. Am Nat 158:324–330CrossRefPubMedGoogle Scholar
  8. Duarte CM (1991) Allometric scaling of seagrass form and productivity. Mar Ecol Prog Ser 77:289–300CrossRefGoogle Scholar
  9. Dumbauld BR (1994) Thalassinid shrimp ecology and the use of carbaryl to control populations on oyster ground in Washington coastal estuaries. PhD thesis, University of Washington, SeattleGoogle Scholar
  10. Dumbauld BR, Wyllie-Echeverria S (2003) The influence of burrowing thalassinid shrimps on the distribution of intertidal seagrasses in Willapa Bay, Washington, USA. Aquat Bot 77:27–42CrossRefGoogle Scholar
  11. Duncan RP, Williams PA (2002) Darwin’s naturalization hypothesis challenged. Nature 417:608–609CrossRefPubMedGoogle Scholar
  12. Feldman KL, Armstrong DA, Dumbauld BR, DeWitt TH, Doty DC (2000) Oysters, crabs, and burrowing shrimp: review of an environmental conflict over aquatic resources and pesticide use in Washington State’s (USA) coastal estuaries. Estuaries 23:141–176CrossRefGoogle Scholar
  13. Goodwin BJ, McAllister AJ, Fahrig L (1999) Predicting invasiveness of plant species based on biological information. Conserv Biol 13:422–426CrossRefGoogle Scholar
  14. Green EP, Short FT (eds) (2003) World atlas of seagrasses. University of California Press, BerkeleyGoogle Scholar
  15. Hahn DR (2003) Alteration of microbial community composition and changes in decomposition associated with an invasive intertidal macrophyte. Biol Inv 5:45–51CrossRefGoogle Scholar
  16. Harrison PG (1982a) Spatial and temporal patterns in abundance of two intertidal seagrasses, Zostera americana Den Hartog and Zostera marina L. Aquat Bot 12:305–320CrossRefGoogle Scholar
  17. Harrison PG (1982b) Seasonal and year-to-year variations in mixed intertidal populations of Zostera japonica Aschers & Graebn. and Ruppia maritima L. s.l. Aquat Bot 14:357–371CrossRefGoogle Scholar
  18. Harrison PG, Bigley RE (1982) The recent introduction of the seagrass Zostera japonica Aschers & Graebn. to the Pacific Coast of North America. Can J Fish Aquat Sci 39:1642–1648CrossRefGoogle Scholar
  19. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, OrlandoGoogle Scholar
  20. Hickey BM, Banas NS (2003) Oceanography of the US Pacific Northwest Coastal Ocean and estuaries with application to coastal ecology. Estuaries 26:1010–1031CrossRefGoogle Scholar
  21. Huong TTL, Vermaat JE, Terrados J, Tien NV, Duarte CM, Borum J, Tri NH (2003) Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquat Bot 75:147–157CrossRefGoogle Scholar
  22. Ibarra-Obando SE, Boudouresque CF (1994) An improvement of the Zieman leaf marking technique for Zostera marina growth and production assessment. Aquat Bot 47:293–302CrossRefGoogle Scholar
  23. Kaldy JE (2006) Production ecology of the non-indigenous seagrass, dwarf seagrass (Zostera japonica Ascher & Graeb.), in a Pacific Northwest estuary, USA. Hydrobiologia 553:201–217CrossRefGoogle Scholar
  24. Kaldy J, Lee KS (2007) Factors controlling Zostera marina L. growth in the eastern and western Pacific Ocean: comparisons between Korea and Oregon, USA. Aquat Bot 87:116–126CrossRefGoogle Scholar
  25. Keiser AL (2004) A study of the spatial and temporal variation of eelgrass, Zostera marina, its epiphytes, and the grazer Phyllaplysia taylori in Arcata Bay, California, USA. Masters thesis, Humboldt State University, ArcataGoogle Scholar
  26. Kowalski JL, DeYoe HR, Allison TC, Kaldy JE (2001) Productivity estimation in Halodule wrightii: comparison of leaf-clipping and leaf-marking techniques and the importance of clip height. Mar Ecol Prog Ser 220:131–136CrossRefGoogle Scholar
  27. Kuo J, Kanamoto Z, Iizumi H, Aioi K, Mukai H (2006) Seagrasses from the Nansei Islands, Southern Japanese Archipelago: species composition, distribution and biogeography. Mar Ecol 27:290–298CrossRefGoogle Scholar
  28. Larned ST (2003) Effects of the invasive, nonindigenous seagrass Zostera japonica on nutrient fluxes between the water column and benthos in a NE Pacific estuary. Mar Ecol Prog Ser 254:69–80CrossRefGoogle Scholar
  29. Lee SY (1997) Annual cycle of biomass of a threatened population of the intertidal seagrass Zostera japonica in Hong Kong. Mar Biol 129:183–193CrossRefGoogle Scholar
  30. Lee SY, Oh JH, Choi CI, Suh Y, Mukai H (2005) Leaf growth and population dynamics of intertidal Zostera japonica on the western coast of Korea. Aquat Bot 83:263–280CrossRefGoogle Scholar
  31. Lee SY, Kim JB, Lee SM (2006) Temporal dynamics of subtidal Zostera marina and intertidal Zostera japonica on the southern coast of Korea. Mar Ecol 27:133–144CrossRefGoogle Scholar
  32. Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  33. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809CrossRefPubMedGoogle Scholar
  34. Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121CrossRefGoogle Scholar
  35. Maron JL, Vila M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies hypothesis. Oikos 95:361–373CrossRefGoogle Scholar
  36. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vazquez DP (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740CrossRefPubMedGoogle Scholar
  37. Moore KA, Short FT (2006) Zostera: biology, ecology, and management. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 361–386Google Scholar
  38. Nomme KM, Harrison PG (1991a) A multivariate comparison of the seagrasses Zostera marina and Zostera japonica in monospecific versus mixed populations. Can J Bot 69:1984–1990CrossRefGoogle Scholar
  39. Nomme KM, Harrison PG (1991b) Evidence for interaction between the seagrasses Zostera marina and Zostera japonica on the Pacific coast Canada. Can J Bot 69:2004–2010CrossRefGoogle Scholar
  40. Olesen B, Sand-Jensen K (1994) Biomass-density patterns in the temperate seagrass Zostera marina. Mar Ecol Prog Ser 109:283–291CrossRefGoogle Scholar
  41. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006a) A global crisis for seagrass ecosystems. BioScience 56:987–996CrossRefGoogle Scholar
  42. Orth RJ, Harwell MC, Inglis GJ (2006b) Ecology of seagrass seeds and seagrass dispersal processes. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 111–133Google Scholar
  43. Phillips RC, Grant WE, McRoy CP (1983) Reproductive strategies of eelgrass (Zostera marina L.). Aquat Bot 16:1–20CrossRefGoogle Scholar
  44. Rejmanek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661CrossRefGoogle Scholar
  45. Ricciardi A, Mottiar M (2006) Does Darwin’s naturalization hypothesis explain fish invasions? Biol Inv 8:1403–1407CrossRefGoogle Scholar
  46. Rosenberg MS, Adams DC, Gurevitch J (2000) Metawin 2.0. Sinauer, SunderlandGoogle Scholar
  47. Ruesink JL, Roegner GC, Dumbauld BR, Newton JA, Armstrong D (2003) Contributions of oceanic and watershed energy sources to secondary production in a northeastern Pacific estuary. Estuaries 26:1079–1093CrossRefGoogle Scholar
  48. Ruesink JL, Feist BE, Harvey CJ, Hong JS, Trimble AC, Wisehart LM (2006) Changes in productivity associated with four introduced species: ecosystem transformation of a “pristine” estuary. Mar Ecol Prog Ser 311:203–215CrossRefGoogle Scholar
  49. Shafer DJ, Sherman TD, Wyllie-Echeverria S (2007) Do desiccation tolerances control the vertical distribution of intertidal seagrasses? Aquat Bot 87:161–166CrossRefGoogle Scholar
  50. Shafer DJ, Wyllie-Echeverria S, Sherman TD (2008) The potential role of climate in the distribution and zonation of the introduced seagrass Zostera japonica in North America. Aquat Bot 89:297–302CrossRefGoogle Scholar
  51. Shin H, Choi H–K (1998) Taxonomy and distribution of Zostera (Zosteraceae) in eastern Asia, with special reference to Korea. Aquat Bot 60:49–66CrossRefGoogle Scholar
  52. Tallis HM, Ruesink JL, Dumbauld B, Hacker S, Wisehart LM (2009) Oysters and aquaculture practices affect eelgrass density and productivity in a Pacific Northwest estuary. J Shellfish Res 28:251–261CrossRefGoogle Scholar
  53. Thom RM (1990) Spatial and temporal patterns in plant standing stock and primary production in a temperate seagrass system. Bot Mar 33:497–510CrossRefGoogle Scholar
  54. Thom RM, Miller B, Kennedy M (1995) Temporal patterns of grazers and vegetation in a temperate seagrass system. Aquat Bot 50:201–205CrossRefGoogle Scholar
  55. Thom RM, Borde AB, Rumrill S, Woodruff DL, Williams GD, Southard JA, Sargeant SL (2003) Factors influencing spatial and annual variability in eelgrass (Zostera marina L.) meadows in Willapa Bay, Washington, and Coos Bay, Oregon, estuaries. Estuaries 26:1117–1129CrossRefGoogle Scholar
  56. Vila M, Weiner J (2004) Are invasive plant species better competitors than native plant species? Evidence from pair-wise experiments. Oikos 105:229–238CrossRefGoogle Scholar
  57. White JM, Ruesink JL, Trimble AC (2009) The nearly forgotten oyster: Ostrea lurida Carpenter 1864 (Olympia oyster) history and management in Washington State. J Shellfish Res 28:43–49CrossRefGoogle Scholar
  58. Wisehart LM, Dumbauld BR, Ruesink JL, Hacker SD (2007) Importance of eelgrass early life history stages in response to oyster aquaculture disturbance. Mar Ecol Prog Ser 344:71–80CrossRefGoogle Scholar
  59. Wonham MJ, Carlton JT (2005) Trends in marine biological invasions at local and regional scales: the Northeast Pacific ocean as a model system. Biol Inv 7:369–392CrossRefGoogle Scholar
  60. Yoon SP (2006) The eelgrass, Zostera marina and its associated macro-invertebrate communities in Gwangyang Bay, Korea. PhD thesis, Inha University, IncheonGoogle Scholar
  61. Zieman JC (1974) Methods for the study of growth and production of turtle grass, Thalassia testudinum Köng. Aquaculture 4:139–143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jennifer L. Ruesink
    • 1
  • Jae-Sang Hong
    • 2
  • Lorena Wisehart
    • 3
  • Sally D. Hacker
    • 3
  • Brett R. Dumbauld
    • 4
  • Margot Hessing-Lewis
    • 3
  • Alan C. Trimble
    • 1
  1. 1.Department of BiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of OceanographyInha UniversityIncheonRepublic of Korea
  3. 3.Department of ZoologyOregon State UniversityCorvallisUSA
  4. 4.Hatfield Marine Science CenterUSDA/ARSNewportUSA

Personalised recommendations