Biological Invasions

, Volume 12, Issue 3, pp 657–676 | Cite as

Invasibility or invasiveness? Effects of habitat, genotype, and their interaction on invasive Rhododendron ponticum populations

  • Alexandra Erfmeier
  • Helge Bruelheide
Original Paper


The extent and nature of biological invasions are mainly influenced by either the genotype of the invading species, the suitability of the new habitat or by genotype-habitat interactions expressed in adaptations to the new environment. The relevance of these factors was assessed for the invasive evergreen shrub Rhododendron ponticum. Habitat characteristics of soil, climate and community properties were analysed in six native populations in both Georgia (Caucasus) and Spain and in six invasive ones in Ireland. Growth variables of rhododendron individuals and seedling occurrences in the field served as response variables. We performed a reciprocal transplant experiment with rhododendron cuttings and determined survival of transplants in all countries. Due to low survival rates in Georgia and Spain, vegetative increase was only analysed for Ireland. The Irish sites benefited from significantly higher nutrient supply than the Spanish and Georgian sites. We found both strong positive correlations of nutrient supply and negative correlations of seasonal temperature amplitude with growth variables of shoots and seedling density. Origin, target site and interaction effects were significant in the survival of transplanted rhododendron individuals. The Irish site was more favorable for all genotypes, but the invasive genotypes did not perform better than the native ones. The total increase in shoot length of transplants in Ireland was highest in the Irish genotypes, which might suggest adaptation of the Irish populations to their new area. In conclusion, we found evidence for invasiveness of Irish Rhododendron ponticum populations, but only in the invaded habitat. Nonetheless, habitats in the new range also seem to be well suited to native Spanish populations, supporting the idea that invasibility of these new sites also contributes to rhododendron invasion success.


Biometry Genotype-by-environment interaction Invasive traits Reciprocal transplant experiment Regional adaptation Release hypothesis Resource availability Survival rates 



We thank Giorgi Nakhutsrishvili, Zurab Manvelidze, Juan Arroyo, the staff from Los Alcornocales Natural Park, Gerry Doyle and the staffs from Killarney National Park and Wicklow National Park for their help in organizing fieldwork and receiving permissions to perform the transplantation experiment in Georgia, Spain and Ireland. We greatly acknowledge the help of Mathias Wegner in conducting data collection in the field, and we appreciate valuable collaboration with Christian Kluth and Karsten Wesche for assistance with statistical analyses. We thank Daniel McCluskey for his help with final linguistic polishing. This work was supported by a grant of the German Research Foundation (BR 1698/3).


  1. Albert ME, D’Antonio CM, Schierenbeck KA (1997) Hybridization and introgression in Carpobrotus spp. (Aizoaceae) in California: I. Morphological evidence. Am J Bot 84:896–904. doi: 10.2307/2446279 Google Scholar
  2. Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi: 10.1078/1433-8319-00004 Google Scholar
  3. Anttila CK, Daehler CC, Rank NE, Strong DR (1998) Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. Am J Bot 85:1597–1601. doi: 10.2307/2446487 Google Scholar
  4. Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by random amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186. doi: 10.1046/j.1365-294x.1999.00679.x Google Scholar
  5. Baker HG, Stebbins GL, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New YorkGoogle Scholar
  6. Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, Cambridge, pp 21–33Google Scholar
  7. Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192. doi: 10.1007/s004420050920 Google Scholar
  8. Bastlová D, Kvet J (2002) Differences in dry weight partitioning and flowering phenology between native and non-native plants of purple loosestrife (Lythrum salicaria L.). Flora 197:332–340Google Scholar
  9. Beerling DJ (1993) The impact of temperature on the distribution limits of the introduced species Fallopia japonica and Impatiens glandulifera in north–west Europe. J Biogeogr 20:45–53. doi: 10.2307/2845738 Google Scholar
  10. Blair AC, Wolfe LM (2004) The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology 85:3035–3042. doi: 10.1890/04-0341 Google Scholar
  11. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11. doi: 10.1007/s00442-005-0070-z PubMedGoogle Scholar
  12. Brown JS, Eckert CG (2005) Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomaceae). Am J Bot 92:495–502. doi: 10.3732/ajb.92.3.495 Google Scholar
  13. Bruelheide H (1999) Experiments as a tool to investigate plant range boundaries. Verh Ges Ökol 29:19–26Google Scholar
  14. Brunner E, Puri ML (2001) Nonparametric methods in factorial designs. Stat Papers 42:1–52. doi: 10.1007/s003620000039 Google Scholar
  15. Burke MJW, Grime JP (1996) An experimental study of plant community invasibility. Ecology 77:776–790. doi: 10.2307/2265501 Google Scholar
  16. Chamberlain DH (1982) A revision of Rhododendron II. subgenus Hymenanthes. Notes R Botanic Garden Edinb 39:209–486Google Scholar
  17. Cox PA (1979) The larger species of Rhododendron. BT Batsford Ltd, LondonGoogle Scholar
  18. Craine JM, Lee WG (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134:471–478PubMedGoogle Scholar
  19. Crawley MJ (1987) What makes a community invasible? In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell, Oxford, pp 429–453Google Scholar
  20. Cronk QCB, Fuller JL (1995) Plant invaders—the threat to natural ecosystems. Chapman & Hall, LondonGoogle Scholar
  21. Cross JR (1975) Biological flora of the British Isles. Rhododendron ponticum L. J Ecol 63:345–364. doi: 10.2307/2258859 Google Scholar
  22. Cross JR (1981) The establishment of Rhododendron ponticum in the Killarney oakwoods, S.W. Ireland. J Ecol 69:807–824. doi: 10.2307/2259638 Google Scholar
  23. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x Google Scholar
  24. Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367. doi: 10.1890/0012-9658(2006)87(1359:RTCPCD)2.0.CO;2 PubMedGoogle Scholar
  25. Eckhart VM, Geber MA, McGuire CM (2004) Experimental studies of adaptation in Clarkia xantiana I. Sources of trait variation across a subspecies border. Evolution Int J Org Evolution 58:59–70Google Scholar
  26. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi: 10.1007/s10021-002-0151-3 Google Scholar
  27. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi: 10.1073/pnas.97.13.7043 PubMedGoogle Scholar
  28. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  29. Erfmeier A, Bruelheide H (2004) Comparison of native and invasive Rhododendron ponticum populations: growth, reproduction and morphology under field conditions. Flora 199:120–133Google Scholar
  30. Erfmeier A, Bruelheide H (2005) Invasive and native Rhododendron ponticum populations: is there evidence for genotypic differences in germination and growth? Ecography 28:417–428. doi: 10.1111/j.0906-7590.2005.03967.x Google Scholar
  31. Etterson JR (2004a) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution Int J Org Evolution 58:1446–1458Google Scholar
  32. Etterson JR (2004b) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the Great Plains. Evolution Int J Org Evolution 58:1459–1471Google Scholar
  33. Franks SJ, Pratt PD, Dray FA, Simms EL (2008) No evolution of increased competitive ability or decreased allocation to defense in Melaleuca quinquenervia since release from natural enemies. Biol Invasions 10:455–466. doi: 10.1007/s10530-007-9143-8 Google Scholar
  34. Fritsche F, Kaltz O (2000) Is the Prunella (Lamiaceae) hybrid zone structured by an environmental gradient? Evidence from a reciprocal transplant experiment. Am J Bot 87:995–1003. doi: 10.2307/2656999 PubMedGoogle Scholar
  35. Galloway LF, Fenster CB (2000) Population differentiation in an annual legume: local adaptation. Evolution Int J Org Evolution 54:1173–1181Google Scholar
  36. García-Ramos G, Rodríguez D (2002) Evolutionary speed of species invasions. Evolution Int J Org Evolution 56:661–668. doi: 10.1554/0014-3820(2002)056(0661:ESOSI)2.0.CO;2 Google Scholar
  37. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259. doi: 10.1073/pnas.132403299 PubMedGoogle Scholar
  38. Geber MA, Eckhart VM (2005) Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border. Evolution Int J Org Evolution 59:521–531Google Scholar
  39. Gray AJ (1986) Do invading species have definable genetic characteristics? Philos Trans R Soc Lond B Biol Sci 314:655–674. doi: 10.1098/rstb.1986.0079 Google Scholar
  40. Hänfling B, Kollmann J (2002) An evolutionary perspective of biological invasions. Trends Ecol Evol 17:545–546. doi: 10.1016/S0169-5347(02)02644-7 Google Scholar
  41. Hayes KR, Barry SC (2008) Are there any consistent predictors of invasion success? Biol Invasions 10:483–506. doi: 10.1007/s10530-007-9146-5 Google Scholar
  42. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.0022-0477.2004.00953.x Google Scholar
  43. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 Google Scholar
  44. Hobbs RJ, Atkins L (1988) Effect of disturbance and nutrient addition on native and introduced annuals in plant communities in the western Australian wheatbelt. Aust J Ecol 13:171–179. doi: 10.1111/j.1442-9993.1988.tb00966.x Google Scholar
  45. Hoopes MF, Hall LM (2002) Edaphic factors and competition affect pattern formation and invasion in a California grassland. Ecol Appl 12:24–39. doi: 10.1890/1051-0761(2002)012(0024:EFACAP)2.0.CO;2 Google Scholar
  46. Huenneke LF, Hamburg SP, Koide R, Mooney HA, Vitousek PM (1990) Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478–491. doi: 10.2307/1940302 Google Scholar
  47. Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155. doi: 10.1016/S0169-5347(03)00002-8 Google Scholar
  48. Husband BC, Barrett SCH (1996) A metapopulation perspective in plant population biology. J Ecol 84:461–469. doi: 10.2307/2261207 Google Scholar
  49. Jäger EJ (1988) Möglichkeiten der Prognose synanthroper Pflanzenausbreitungen. Flora 180:101–131Google Scholar
  50. Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good J, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras A-SD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. doi: 10.1046/j.1461-0248.2001.00262.x Google Scholar
  51. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x Google Scholar
  52. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 Google Scholar
  53. Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. doi: 10.1038/417067a PubMedGoogle Scholar
  54. Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 15–38Google Scholar
  55. Küster EC, Kühn I, Bruelheide H, Klotz S (2008) Trait interactions help explain plant invasion success in the German flora. J Ecol 96:860–868. doi: 10.1111/j.1365-2745.2008.01406.x Google Scholar
  56. Lambrinos JG (2004) How interactions between ecolgoy and evolution influence contemporary invasion dynamics. Ecology 85:2061–2070. doi: 10.1890/03-8013 Google Scholar
  57. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/S0169-5347(02)02554-5 Google Scholar
  58. Leger EA, Rice KJ (2003) Invasive California poppies (Eschscholzia californica Cham.) grow larger than native individuals under reduced competition. Ecol Lett 6:257–264. doi: 10.1046/j.1461-0248.2003.00423.x Google Scholar
  59. Leiss KA, Müller-Schärer H (2001) Performance of reciprocally sown populations of Senecio vulgaris from ruderal and agricultural habitats. Oecologia 128:210–216. doi: 10.1007/s004420100649 Google Scholar
  60. Li Y, Norland M (2001) The role of soil fertility in invasion of brazilian pepper (Schinus terebinthifolius) in Everglades National Park, Florida. Soil Sci 166:400–405. doi: 10.1097/00010694-200106000-00005 Google Scholar
  61. Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and a meta-analysis. Biol Invasions 8:1535–1545. doi: 10.1007/s10530-005-5845-y Google Scholar
  62. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  63. Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121. doi: 10.1016/0006-3207(96)00021-3 Google Scholar
  64. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: cause, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi: 10.1890/1051-0761(2000)010(0689:BICEGC)2.0.CO;2 Google Scholar
  65. Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280. doi: 10.1890/03-4027 Google Scholar
  66. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, LondonGoogle Scholar
  67. McGraw JB, Antonovics J (1983) Experimental ecology of Dryas octopetala ecotypes I. Ecotypic differentiation and life-cycle stages of selection. J Ecol 71:879–897. doi: 10.2307/2259599 Google Scholar
  68. Mejías JA, Arroyo J, Ojeda F (2002) Reproductive ecology of Rhododendron ponticum (Ericaceae) in relict Mediterranean populations. Bot J Linn Soc 140:297–311. doi: 10.1046/j.1095-8339.2002.00103.x Google Scholar
  69. Mihulka S, Pyšek P (2001) Invasion history of Oenothera congeners in Europe: a comparative study of spreading rates in the last 200 years. J Biogeogr 28:597–609. doi: 10.1046/j.1365-2699.2001.00574.x Google Scholar
  70. Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Mol Ecol 9:541–556. doi: 10.1046/j.1365-294x.2000.00906.x PubMedGoogle Scholar
  71. Mitchell RJ, Marrs RH, Le Duc MG, Auld MHD (1997) A study of succession on lowland heaths in Dorset, southern England: changes in vegetation and soil chemical properties. J Appl Ecol 34:1426–1444. doi: 10.2307/2405259 Google Scholar
  72. Montalvo AM, Ellstrand NC (2000) Transplantation of the subshrub Lotus scoparius: testing the home-site advantage hypothesis. Conserv Biol 14:1034–1045. doi: 10.1046/j.1523-1739.2000.99250.x Google Scholar
  73. Myers JH, Bazely D (2003) Ecology and control of introduced plants. Cambridge University Press, CambridgeGoogle Scholar
  74. Niinemets Ü, Valladares F, Ceulemans R (2003) Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant Cell Environ 26:941–956. doi: 10.1046/j.1365-3040.2003.01027.x PubMedGoogle Scholar
  75. Noble IR (1989) Attributes of invaders and the invading process: terrestrial vascular plants. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson MH (eds) The ecology of biological invasions: a global perspective. Wiley, Chichester, pp 301–313Google Scholar
  76. Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72. doi: 10.1046/j.1523-1739.2003.02019.x Google Scholar
  77. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. University Press, CambridgeGoogle Scholar
  78. Radford IJ, Cousens RD (2000) Invasiveness and comparative life-history traits of exotic and indigenous Senecio species in Australia. Oecologia 125:531–542. doi: 10.1007/s004420000474 Google Scholar
  79. Reinhart KO, Packer A, Van der Putten W, Clay K (2003) Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050. doi: 10.1046/j.1461-0248.2003.00539.x Google Scholar
  80. Rejmánek M (1995) What makes a species invasive? In: Pyšek P, Prach K, Rejmánek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 3–13Google Scholar
  81. Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198. doi: 10.1023/A:1013352109042 PubMedGoogle Scholar
  82. Rice KJ, Mack RN (1991) Ecological genetics of Bromus tectorum: III. The demography of reciprocally sown populations. Oecologia 88:91–101. doi: 10.1007/BF00328408 Google Scholar
  83. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi: 10.1146/annurev.ecolsys.32.081501.114037 Google Scholar
  84. SAS Institute (2000) SAS procedures guide. Cary, North CarolinaGoogle Scholar
  85. Schulz C, Bruelheide H (1999) An experimental study on the impact of winter temperature on the distribution of Euphorbia amygdaloides L. in Central Germany. In: Klötzli F, Walther G-R (eds) Recent shifts in vegetation boundaries of deciduous forests, especially due to general global warming. Birkhäuser Verlag, Basel, pp 121–150Google Scholar
  86. Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to invade cold climates in North America. Ecol Appl 12:1652–1660. doi: 10.1890/1051-0761(2002)012(1652:PAGDMA)2.0.CO;2 Google Scholar
  87. Shaw MW (1984) Rhododendron ponticum—ecological reasons for the success of an alien species in Britain and features that may assist in its control. Asp Appl Biol 5:231–242Google Scholar
  88. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi: 10.1016/S0169-5347(02)02495-3 Google Scholar
  89. Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecol Lett 4:514–518. doi: 10.1046/j.1461-0248.2001.00274.x Google Scholar
  90. Siemann E, Rogers WE (2003) Reduced resistance of invasive varieties of the alien tree Sapium sebiferum to a generalist herbivore. Oecologia 135:451–457PubMedGoogle Scholar
  91. Sokal RR, Rohlf FJ (2003) Biometry. Freeman and Company, New YorkGoogle Scholar
  92. Stephenson C, MacKenzie ML, Edwards C, Travis JMJ (2006) Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol Modell 193:747–758. doi: 10.1016/j.ecolmodel.2005.09.007 Google Scholar
  93. Stout JC (2007) Reproductive biology of the invasive exotic shrub, Rhododendron ponticum L. (Ericaceae). Bot J Linn Soc 155:373–381. doi: 10.1111/j.1095-8339.2007.00719.x Google Scholar
  94. Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332. doi: 10.1016/S0169-5347(98)01378-0 Google Scholar
  95. Thompson K, Hodgson JG, Rich CG (1995) Native and invasive alien plants: more of the same? Ecography 18:390–402. doi: 10.1111/j.1600-0587.1995.tb00142.x Google Scholar
  96. Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:1–110Google Scholar
  97. Vilà M, Maron JL, Marco L (2005) Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia 142:474–479. doi: 10.1007/s00442-004-1731-z PubMedGoogle Scholar
  98. Welk E, Schubert K, Hoffmann M (2002) Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America. Divers Distrib 8:219–233. doi: 10.1046/j.1472-4642.2002.00144.x Google Scholar
  99. Williamson MH (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar
  100. Williamson MH, Fitter A (1996) The characters of succesful invaders. Biol Conserv 78:163–170. doi: 10.1016/0006-3207(96)00025-0 Google Scholar
  101. Willis AJ, Blossey B (1999) Benign environments do not explain the increased vigour of non-indigenous plants: a cross-continental transplant experiment. Biocontrol Sci Technol 9:567–577. doi: 10.1080/09583159929523 Google Scholar
  102. Willis SG, Hulme PE (2002) Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK? Funct Ecol 16:530–539. doi: 10.1046/j.1365-2435.2002.00653.x Google Scholar
  103. Willis AJ, Memmott J, Forrester RI (2000) Is there evidence for the post-invasion evolution of incresed size among invasive plant species? Ecol Lett 3:275–283. doi: 10.1046/j.1461-0248.2000.00149.x Google Scholar
  104. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, CambridgeGoogle Scholar
  105. Yu Z, Dahlgren RA, Northup RR (1999) Evolution of soil properties and plant communities along an extreme edaphic gradient. Eur J Soil Biol 35:31–38. doi: 10.1016/S1164-5563(99)00103-X Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations