Skip to main content

Haplotypes of Fallopia introduced into the US

Abstract

In the US, clonal growth of Fallopia japonica, Fallopia sachalinensis and their hybrid Fallopia x bohemica (Polygonaceae) is prominent, yet sexual reproduction and hybridization contribute to the genetic complexity of swarms. The contribution to this diversity from multiple introductions is unknown. Using 800 bp of the non-coding chloroplast marker accD–rbcL, we compared 21 Japanese haplotypes with 46 US samples from 11 states, 2 Canadian samples, and 6 European samples from 4 countries, in order to investigate if there were repeated introductions from Asia. While most North American and all European haplotypes accessions in our collection matched a single widespread haplotype, we identified 8 other haplotypes. Three haplotypes of F. japonica (including the widespread haplotype) and one F. sachalinensis matched previously identified Japanese haplotypes, supporting the hypothesis of multiple introductions in the US. Five additional US haplotypes were detected once. Four of these differed from Japanese haplotypes by one single nucleotide polymorphism (SNP), possibly indicating a recent in situ change. The fifth haplotype represents a garden cultivar, which differed from all F. japonica haplotypes. It therefore appears that the US genetic diversity of these taxa has three sources: intra-specific reproduction, inter-specific reproduction, and multiple sources of introduction.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Bailey JP, Conolly AP (2000) Prize-winners to pariahs-A history of Japanese Knotweel s.l. (Polygonaceae) in the British Isles. Watsonia 23:93–110

    Google Scholar 

  2. Bailey JP, Stace CA (1992) Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia (Polygonaceae). Plant Syst Evol 180:29–52. doi:10.1007/BF00940396

    Article  Google Scholar 

  3. Bailey JP, Child LE, Wade M (1995) Assessment of the genetic variation and spread of British populations of Fallopia japonica and its hybrid Fallopia x bohemica. In: Pyšek P, Prach K, Rejmánek M et al (eds) Plant invasions-general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 141–150

    Google Scholar 

  4. Bailey JP, Bimova K, Mandak B (2008) Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage of “Battle of the Clones”. Biol Invasions (http://dx.doi.org/10.1007/s10530-008-9381-4)

  5. Barney JN, Whitlow TH, Lembo AJ Jr (2008) Revealing historic invasion patterns and potential invasion sites for two non-native plant species. PLoS One 3(2):e1635. doi:10.1371/journal.pone.0001635

    Article  PubMed  Google Scholar 

  6. Bram MR, McNair JN (2004) Seed germinability and its seasonal onset of Japanese knotweed (Polygonum cuspidatum). Weed Sci 52:759–767. doi:10.1614/P2002-053

    Article  CAS  Google Scholar 

  7. Chiang TY, Schall BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250

    CAS  Google Scholar 

  8. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  9. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi:10.1111/j.1365-294X.2007.03538.x

    Article  CAS  PubMed  Google Scholar 

  10. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi:10.1073/pnas.97.13.7043

    Article  CAS  PubMed  Google Scholar 

  11. Facon B, Pointier JP, Jarne P et al (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Evol Ecol 18:363–367

    CAS  Google Scholar 

  12. Forman J, Kesseli RV (2003) Sexual reproduction in the invasive species Fallopia japonica (Polygonaceae). Am J Bot 90:586–592. doi:10.3732/ajb.90.4.586

    Article  Google Scholar 

  13. Gammon MA, Grimsby JL, Tsirelson D et al (2007) Molecular and morphological evidence reveals introgression in swarms of the invasive taxa Fallopia japonica, F. sachalinensis, and F. x bohemica (Polygonaceae) in the United States. Am J Bot 94:948–956. doi:10.3732/ajb.94.6.948

    Article  Google Scholar 

  14. Grimsby JL, Tsirelson D, Gammon MA et al (2007) Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am J Bot 94:957–964. doi:10.3732/ajb.94.6.957

    Article  Google Scholar 

  15. Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472

    Google Scholar 

  16. Inamura A, Ohashi Y, Sato E et al (2000) Intraspecific sequence variation of chloroplast DNA reflecting variety and geographical distribution of Polygonum cuspidatum (Polygonaceae) in Japan. J Plant Res 113:419–426. doi:10.1007/PL00013950

    Article  Google Scholar 

  17. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888. doi:10.1073/pnas.0607324104

    Article  CAS  PubMed  Google Scholar 

  18. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi:10.1016/S0169-5347(02)02554-5

    Article  Google Scholar 

  19. Leger EA, Rice KJ (2003) Invasive California poppies (Eschscholzia californica Cham.) grow larger than native individuals under reduced competition. Ecol Lett 6:257–264. doi:10.1046/j.1461-0248.2003.00423.x

    Article  Google Scholar 

  20. Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103. doi:10.1111/j.1420-9101.2006.01292.x

    Article  CAS  PubMed  Google Scholar 

  21. Mandák B, Pyšek P, Lysák M et al (2003) Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Ann Bot (Lond) 92:265–272. doi:10.1093/aob/mcg141

    Article  Google Scholar 

  22. Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64

    Google Scholar 

  23. Mandák B, Bímová K, Pyšek P et al (2005) Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Syst Evol 253:219–230. doi:10.1007/s00606-005-0316-6

    Article  Google Scholar 

  24. Pyšek P, Brock JH, Bímová K et al (2003) Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invasibility at the genotype level. Am J Bot 90:1487–1495. doi:10.3732/ajb.90.10.1487

    Article  Google Scholar 

  25. Richards CL, Walls RL, Bailey JP et al (2008) Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s.l. (Fallopia japonica and F. x bohemica, Polygonaceae). Am J Bot 95:931–942. doi:10.3732/ajb.2007364

    Article  Google Scholar 

  26. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  27. Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control. doi:10.1016/j.biocontrol.2009.01.016

  28. Taberlet P, Gielly L, Pautou G et al (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi:10.1007/BF00037152

    Article  CAS  PubMed  Google Scholar 

  29. Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi:10.1093/nar/25.24.4876

    Article  Google Scholar 

  30. Tiébré M, Vanderhoeven S, Saad L et al (2007) Hybridization and sexual reproduction in the invasive alien Fallopia (Polygonaceae) complex in Belgium. Ann Bot (Lond) 99:193–203. doi:10.1093/aob/mcl242

    Article  Google Scholar 

  31. Ward SM, Gaskin JF, Wilson LM (2008) Ecological genetics of plant invasions: what do we know? Invasive Plant Sci Manage 1:98–109. doi:10.1614/IPSM-07-022.1

    Article  Google Scholar 

  32. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580. doi:10.1111/j.1472-4642.2008.00473.x

    Article  Google Scholar 

  33. Yonekura K, Ohashi H (1997) New combinations of East Asian species of Polygonum s.l. J Jpn Bot 72:154–161

    Google Scholar 

  34. Zhou Z, Miwa M, Kara K et al (2003) Patch establishment and development of a clonal plant, Polygonum cuspidatum, on Mount Fuji. Mol Ecol 12:1361–1373. doi:10.1046/j.1365-294X.2003.01816.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank John Bailey, Pluma Beyer, Denise Deering, Jennifer Forman Orth, Cindy Kalkwarf, Christoph Methfessel, Christopher A. Militscher, Nick Page, Luca Paltrinieri, Julie Richburg, Dina Tsirelson, and Peter Zika for contributing tissue samples; Dina Tsirelson for contributions in the lab; three anonymous reviewers, and Jim Allen for assistance in the University of Massachusetts Boston greenhouse.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Melinda A. Gammon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gammon, M.A., Kesseli, R. Haplotypes of Fallopia introduced into the US. Biol Invasions 12, 421–427 (2010). https://doi.org/10.1007/s10530-009-9459-7

Download citation

Keywords

  • Japanese knotweed
  • Giant knotweed
  • Reynoutria
  • Polygonum cuspidatum
  • Invasive species
  • Haplotype network