Biological Invasions

, Volume 12, Issue 3, pp 421–427 | Cite as

Haplotypes of Fallopia introduced into the US

  • Melinda A. Gammon
  • Rick Kesseli
Invasion Note


In the US, clonal growth of Fallopia japonica, Fallopia sachalinensis and their hybrid Fallopia x bohemica (Polygonaceae) is prominent, yet sexual reproduction and hybridization contribute to the genetic complexity of swarms. The contribution to this diversity from multiple introductions is unknown. Using 800 bp of the non-coding chloroplast marker accD–rbcL, we compared 21 Japanese haplotypes with 46 US samples from 11 states, 2 Canadian samples, and 6 European samples from 4 countries, in order to investigate if there were repeated introductions from Asia. While most North American and all European haplotypes accessions in our collection matched a single widespread haplotype, we identified 8 other haplotypes. Three haplotypes of F. japonica (including the widespread haplotype) and one F. sachalinensis matched previously identified Japanese haplotypes, supporting the hypothesis of multiple introductions in the US. Five additional US haplotypes were detected once. Four of these differed from Japanese haplotypes by one single nucleotide polymorphism (SNP), possibly indicating a recent in situ change. The fifth haplotype represents a garden cultivar, which differed from all F. japonica haplotypes. It therefore appears that the US genetic diversity of these taxa has three sources: intra-specific reproduction, inter-specific reproduction, and multiple sources of introduction.


Japanese knotweed Giant knotweed Reynoutria Polygonum cuspidatum Invasive species Haplotype network 



We thank John Bailey, Pluma Beyer, Denise Deering, Jennifer Forman Orth, Cindy Kalkwarf, Christoph Methfessel, Christopher A. Militscher, Nick Page, Luca Paltrinieri, Julie Richburg, Dina Tsirelson, and Peter Zika for contributing tissue samples; Dina Tsirelson for contributions in the lab; three anonymous reviewers, and Jim Allen for assistance in the University of Massachusetts Boston greenhouse.


  1. Bailey JP, Conolly AP (2000) Prize-winners to pariahs-A history of Japanese Knotweel s.l. (Polygonaceae) in the British Isles. Watsonia 23:93–110Google Scholar
  2. Bailey JP, Stace CA (1992) Chromosome number, morphology, pairing, and DNA values of species and hybrids in the genus Fallopia (Polygonaceae). Plant Syst Evol 180:29–52. doi: 10.1007/BF00940396 CrossRefGoogle Scholar
  3. Bailey JP, Child LE, Wade M (1995) Assessment of the genetic variation and spread of British populations of Fallopia japonica and its hybrid Fallopia x bohemica. In: Pyšek P, Prach K, Rejmánek M et al (eds) Plant invasions-general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 141–150Google Scholar
  4. Bailey JP, Bimova K, Mandak B (2008) Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage of “Battle of the Clones”. Biol Invasions (
  5. Barney JN, Whitlow TH, Lembo AJ Jr (2008) Revealing historic invasion patterns and potential invasion sites for two non-native plant species. PLoS One 3(2):e1635. doi: 10.1371/journal.pone.0001635 CrossRefPubMedGoogle Scholar
  6. Bram MR, McNair JN (2004) Seed germinability and its seasonal onset of Japanese knotweed (Polygonum cuspidatum). Weed Sci 52:759–767. doi: 10.1614/P2002-053 CrossRefGoogle Scholar
  7. Chiang TY, Schall BA, Peng CI (1998) Universal primers for amplification and sequencing a noncoding spacer between the atpB and rbcL genes of chloroplast DNA. Bot Bull Acad Sin 39:245–250Google Scholar
  8. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660. doi: 10.1046/j.1365-294x.2000.01020.x CrossRefPubMedGoogle Scholar
  9. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefPubMedGoogle Scholar
  10. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050. doi: 10.1073/pnas.97.13.7043 CrossRefPubMedGoogle Scholar
  11. Facon B, Pointier JP, Jarne P et al (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Evol Ecol 18:363–367Google Scholar
  12. Forman J, Kesseli RV (2003) Sexual reproduction in the invasive species Fallopia japonica (Polygonaceae). Am J Bot 90:586–592. doi: 10.3732/ajb.90.4.586 CrossRefGoogle Scholar
  13. Gammon MA, Grimsby JL, Tsirelson D et al (2007) Molecular and morphological evidence reveals introgression in swarms of the invasive taxa Fallopia japonica, F. sachalinensis, and F. x bohemica (Polygonaceae) in the United States. Am J Bot 94:948–956. doi: 10.3732/ajb.94.6.948 CrossRefGoogle Scholar
  14. Grimsby JL, Tsirelson D, Gammon MA et al (2007) Genetic diversity and clonal vs. sexual reproduction in Fallopia spp. (Polygonaceae). Am J Bot 94:957–964. doi: 10.3732/ajb.94.6.957 CrossRefGoogle Scholar
  15. Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472Google Scholar
  16. Inamura A, Ohashi Y, Sato E et al (2000) Intraspecific sequence variation of chloroplast DNA reflecting variety and geographical distribution of Polygonum cuspidatum (Polygonaceae) in Japan. J Plant Res 113:419–426. doi: 10.1007/PL00013950 CrossRefGoogle Scholar
  17. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888. doi: 10.1073/pnas.0607324104 CrossRefPubMedGoogle Scholar
  18. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/S0169-5347(02)02554-5 CrossRefGoogle Scholar
  19. Leger EA, Rice KJ (2003) Invasive California poppies (Eschscholzia californica Cham.) grow larger than native individuals under reduced competition. Ecol Lett 6:257–264. doi: 10.1046/j.1461-0248.2003.00423.x CrossRefGoogle Scholar
  20. Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103. doi: 10.1111/j.1420-9101.2006.01292.x CrossRefPubMedGoogle Scholar
  21. Mandák B, Pyšek P, Lysák M et al (2003) Variation in DNA-ploidy levels of Reynoutria taxa in the Czech Republic. Ann Bot (Lond) 92:265–272. doi: 10.1093/aob/mcg141 CrossRefGoogle Scholar
  22. Mandák B, Pyšek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64Google Scholar
  23. Mandák B, Bímová K, Pyšek P et al (2005) Isoenzyme diversity in Reynoutria (Polygonaceae) taxa: escape from sterility by hybridization. Plant Syst Evol 253:219–230. doi: 10.1007/s00606-005-0316-6 CrossRefGoogle Scholar
  24. Pyšek P, Brock JH, Bímová K et al (2003) Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invasibility at the genotype level. Am J Bot 90:1487–1495. doi: 10.3732/ajb.90.10.1487 CrossRefGoogle Scholar
  25. Richards CL, Walls RL, Bailey JP et al (2008) Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s.l. (Fallopia japonica and F. x bohemica, Polygonaceae). Am J Bot 95:931–942. doi: 10.3732/ajb.2007364 CrossRefGoogle Scholar
  26. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  27. Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control. doi: 10.1016/j.biocontrol.2009.01.016
  28. Taberlet P, Gielly L, Pautou G et al (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi: 10.1007/BF00037152 CrossRefPubMedGoogle Scholar
  29. Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882. doi: 10.1093/nar/25.24.4876 CrossRefGoogle Scholar
  30. Tiébré M, Vanderhoeven S, Saad L et al (2007) Hybridization and sexual reproduction in the invasive alien Fallopia (Polygonaceae) complex in Belgium. Ann Bot (Lond) 99:193–203. doi: 10.1093/aob/mcl242 CrossRefGoogle Scholar
  31. Ward SM, Gaskin JF, Wilson LM (2008) Ecological genetics of plant invasions: what do we know? Invasive Plant Sci Manage 1:98–109. doi: 10.1614/IPSM-07-022.1 CrossRefGoogle Scholar
  32. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580. doi: 10.1111/j.1472-4642.2008.00473.x CrossRefGoogle Scholar
  33. Yonekura K, Ohashi H (1997) New combinations of East Asian species of Polygonum s.l. J Jpn Bot 72:154–161Google Scholar
  34. Zhou Z, Miwa M, Kara K et al (2003) Patch establishment and development of a clonal plant, Polygonum cuspidatum, on Mount Fuji. Mol Ecol 12:1361–1373. doi: 10.1046/j.1365-294X.2003.01816.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Massachusetts BostonBostonUSA

Personalised recommendations