Biological Invasions

, Volume 12, Issue 3, pp 531–539 | Cite as

Impacts of weeping lovegrass (Eragrostis curvula) invasion on native grasshoppers: responses of habitat generalist and specialist species

  • Akira Yoshioka
  • Taku Kadoya
  • Shin-ichi Suda
  • Izumi Washitani
Original Paper


We investigated invasion impacts of a grass species (Eragrostis curvula) on native grasshoppers by periodic censuses of these insects on gravelly floodplains of the Kinu River, Japan. Our hypothesis was that there are greater impacts on natives when they are habitat specialists, as opposed to habitat generalists. The study area comprised two main habitat types: gravelly areas and riparian grasslands. Among 12 grasshopper species identified, five were more abundant in one of the habitat types and all of them were significantly negatively affected by coverage of weeping lovegrass, whereas seven occurred at the both habitat types simultaneously and a significantly smaller portion of species (two of the seven) was negatively affected by the alien plants. The results suggest that habitat specificity is related to the grasshopper species’ sensitivity to the plant, indicating that habitat specialist herbivores living on open gravelly floodplains are likely highly vulnerable to this plant invasion.


Eragrostis Gravelly floodplain Grasshoppers Habitat specialist Herbivores Open habitat 



We thank Dr. T. Muranaka (North Asia University) for his support during the censuses, and the Shimodate River office of the Kanto Regional Development Bureau Ministry of Land Infrastructure and Transport for the vegetation map of the National Censuses on River Environments. We also thank the members of Nature Conservation Group of the city of Ujiie, Dr. J. Nishihiro and Dr. J. Ishii for their encouragement during the course of this study and two anonymous referees for their helpful comments. We appreciate Mr. K. Ichinose for his support in processing vegetation map data.


  1. Association of Wildlife Research and EnVision (2007) Search system of Japanese red data. Accessed 5 December 2008
  2. Bock CE, Bock JH, Jepson KL, Ortega JC (1986) Ecological effects of planting African love-grasses in Arizona. Natl Geogr Res 2:456–463Google Scholar
  3. Busch DE, Smith SD (1995) Mechanisms associated with decline of woody species in riparian ecosystems of the southwestern US. Ecol Monogr 65:347–370. doi: 10.2307/2937064 CrossRefGoogle Scholar
  4. Chapman RF (1990) Food selection. In: Chapman RF, Joern A (eds) Biology of grasshoppers. Wiley, New York, pp 39–72Google Scholar
  5. Chey VK, Holloway JD, Hambler C, Speight MR (1998) Canopy knockdown of arthropods in exotic plantations and natural forest in Sabah, north-east Borneo, using insecticidal mist-blowing. Bull Entomol Res 88:15–24CrossRefGoogle Scholar
  6. de Groot M, Kleijn D, Jogan N (2007) Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis. Biol Conserv 136:612–617. doi: 10.1016/j.biocon.2007.01.005 CrossRefGoogle Scholar
  7. Didham RK, Tylianakis JM, Gernmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:489–496. doi: 10.1016/j.tree.2007.07.001 CrossRefPubMedGoogle Scholar
  8. Ernst CM, Cappuccino N (2005) The effect of an invasive alien vine, Vincetoxicum rossicum (Asclepiadaceae), on arthropod populations in Ontario old fields. Biol Invasions 7:417–425. doi: 10.1007/s10530-004-4062-4 CrossRefGoogle Scholar
  9. French K, Major RE (2001) Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos. Austral Ecol 26:303–310. doi: 10.1046/j.1442-9993.2001.01115.x CrossRefGoogle Scholar
  10. Gardiner T, Hill J, Chesmore D (2005) Review of the methods frequently used to estimate the abundance of Orthoptera in grassland ecosystems. J Insect Conserv 9:151–173. doi: 10.1007/s10841-005-2854-1 CrossRefGoogle Scholar
  11. Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biol Conserv 141:646–654. doi: 10.1016/j.biocon.2007.12.009 CrossRefGoogle Scholar
  12. Gratton C, Denno RF (2005) Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restor Ecol 13:358–372. doi: 10.1111/j.1526-100X.2005.00045.x CrossRefGoogle Scholar
  13. Gremmen NJM, Chown SL, Marshall DJ (1998) Impact of the introduced grass Agrostis stolonifera on vegetation and soil fauna communities at Marion Island, sub-Antarctic. Biol Conserv 85:223–231. doi: 10.1016/S0006-3207(97)00178-X CrossRefGoogle Scholar
  14. Harris RJ, Toft RJ, Dugdale JS, Dugdale JS, Williams PA, Rees JS (2004) Insect assemblages in a native (kanuka–Kunzea ericoides) and an invasive (gorse–Ulex europaeus) shrubland. N Z J Ecol 28:35–47Google Scholar
  15. Hobbs RJ, Humphries SE (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770. doi: 10.1046/j.1523-1739.1995.09040761.x CrossRefGoogle Scholar
  16. Japanese Meteorology Agency (2008) Monthly mean and monthly total tables. Accessed 5 December 2008
  17. Japanese Society of Orthoptera (ed) (2006) Orthoptera of the Japanese archipelago in color. Hokkaido University Press, Sapporo (in Japanese)Google Scholar
  18. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373–386. doi: 10.2307/3545850 CrossRefGoogle Scholar
  19. Kappes H, Lay R, Topp W (2007) Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems (N Y, Print) 10:734–744. doi: 10.1007/s10021-007-9052-9 CrossRefGoogle Scholar
  20. Lambrinos JG (2000) The impact of the invasive alien grass Cortaderia jubata (Lemoine) Stapf on an endangered mediterranean-type shrubland in California. Divers Distrib 6:217–231. doi: 10.1046/j.1472-4642.2000.00086.x CrossRefGoogle Scholar
  21. Martin TG, Wintle BA, Rhodes JR, Kuhnert PM, Field SA, Low-Choy SJ, Tyre AJ, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246. doi: 10.1111/j.1461-0248.2005.00826.x CrossRefGoogle Scholar
  22. Mayer PM, Tunnell SJ, Engle DM, Jorgensen EE, Nunn P (2005) Invasive grass alters litter decomposition by influencing macrodetritivores. Ecosystems (N Y, Print) 8:200–209. doi: 10.1007/s10021-004-0018-x CrossRefGoogle Scholar
  23. Ministry of Land Infrastructure, Transport and Tourism, River Bureau, River Environment Division (2004) Heisei 14 Annual report of the National Censuses on River Environments: Plant Survey (book & CD-ROM). Sankaido, Tokyo (in Japanese)Google Scholar
  24. Miyawaki S, Washitani I (2004) Invasive alien plant species in riparian areas of Japan: the contribution of agricultural weeds, revegetation species and aquacultural species. Glob Environ Res 8:89–101Google Scholar
  25. Muranaka T, Washitani I (2001) Alien plant invasions and gravelly floodplain vegetation of Kinu River. Ecol civil Eng 4:121–132 (in Japanese with English abstract)CrossRefGoogle Scholar
  26. Muranaka T, Washitani I (2004) Aggressive invasion of Eragrostis curvla in gravelly floodplains of Japanese rivers: current status, ecological effects and countermeasures. Glob Environ Res 8:155–162Google Scholar
  27. Mwalili SM (2005) Index of/src/contrib/Archive/zicounts. Accessed 5 December 2008
  28. Olckers T, Hulley PE (1991) Impoverished insect herbivore faunas on the exotic bugweed Solanum mauritianum Scop. relative to indigenous Solanum species in Natal/KwaZulu and the Transkei. J Entomol Soc S Afr 54:39–50Google Scholar
  29. Osada T (1989) Illustrated grasses of Japan. Heibonsya, Tokyo (in Japanese)Google Scholar
  30. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488. doi: 10.1016/S0169-5347(99)01723-1 CrossRefPubMedGoogle Scholar
  31. Parker JD, Hay ME (2005) Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol Lett 8:200–209. doi: 10.1111/j.1461-0248.2005.00799.x CrossRefGoogle Scholar
  32. Pellens R, Garay I (1999) Edaphic macroarthropod communities in fast-growing plantations of Eucalyptus grandis Hill ex Maid (Myrtaceae) and Acacia mangium Wild (Leguminosae) in Brazil. Eur J Soil Biol 35:77–89. doi: 10.1016/S1164-5563(99)00209-5 CrossRefGoogle Scholar
  33. Planty-Tabacchi AM, Tabacchi E, Naiman RJ, Deferrari C, Decamps H (1996) Invasibility of species rich communities in riparian zones. Conserv Biol 10:598–607. doi: 10.1046/j.1523-1739.1996.10020598.x CrossRefGoogle Scholar
  34. Tochigi prefecture (ed) (2005) Red Data Book Tochigi. Tochigi prefecture, Utunomiya (in Japanese)Google Scholar
  35. Price RE (1991) Oviposition by the African migratory locust, Locusta migratoria migratorioides, in a crop environment in South-Africa. Entomol Exp Appl 61:169–177. doi: 10.1007/BF00191747 CrossRefGoogle Scholar
  36. Reich M (1991) Grasshoppers Orthoptera Saltatoria on the alpine and dealpine riverbanks and their use as indicators for natural floodplain dynamics. Regul River 6:333–339. doi: 10.1002/rrr.3450060411 CrossRefGoogle Scholar
  37. Richardson DM, Holmes PM, Esler KJ, Galatowitsch SM, Stromberg JC, Kirkman SP, Pysek P, Hobbs RJ (2007) Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Divers Distrib 13:126–139. doi: 10.1111/j.1472-4642.2007.00337.x CrossRefGoogle Scholar
  38. Samways MJ, Moore SD (1991) Influence of exotic conifer patches on grasshopper (Orthoptera) assemblages in a grassland matrix at a recreational resort, Natal, South-Africa. Biol Conserv 57:117–137. doi: 10.1016/0006-3207(91)90134-U CrossRefGoogle Scholar
  39. Slobodchikoff CN, Doyen JT (1977) Effects of Ammophila arenaria on sand dune arthropod communities. Ecology 58:1171–1175. doi: 10.2307/1936939 CrossRefGoogle Scholar
  40. Takeuchi M, Fujita H (1998) Habitat status of the grasshopper, Eusphingonotus japonicus (Saussure), in Kanagawa Prefecture, Japan. Jap J Appl Entomol Zool 42:197–200 in Japanese with English abstractGoogle Scholar
  41. Tallamy DW (2004) Do Alien Plants Reduce Insect Biomass? Conserv Biol 18:1689–1692. doi: 10.1111/j.1523-1739.2004.00512.x CrossRefGoogle Scholar
  42. Topp W, Kappes H, Rogers F (2008) Response of ground-dwelling beetle (Coleoptera) assemblages to giant knotweed (Reynoutria spp.) invasion. Biol Invasions 10:381–390. doi: 10.1007/s10530-007-9137-6 CrossRefGoogle Scholar
  43. Tsukamoto J, Sabang J (2005) Soil macro-fauna in an Acacia mangium plantation in comparison to that in a primary mixed dipterocarp forest in the lowlands of Sarawak, Malaysia. Pedobiologia (Jena) 49:69–80. doi: 10.1016/j.pedobi.2004.08.007 CrossRefGoogle Scholar
  44. Valtonen A, Jantunen J, Saarinen K (2006) Flora and lepidoptera fauna adversely affected by invasive Lupinus polyphyllus along road verges. Biol Conserv 133:389–396. doi: 10.1016/j.biocon.2006.06.015 CrossRefGoogle Scholar
  45. Wardle DA, Nicholson KS, Rahman A (1995) Ecological effects of the invasive weed species Senecio jacobaea L (ragwort) in a New Zealand pasture. Agric Ecosyst Environ 56:19–28. doi: 10.1016/0167-8809(95)00636-2 CrossRefGoogle Scholar
  46. Washitani I (2001) Plant conservation ecology for management and restoration of riparian habitats of lowland Japan. Popul Ecol 43:189–195. doi: 10.1007/s10144-001-8182-8 CrossRefGoogle Scholar
  47. Yeates GW, Williams PA (2001) Influence of three invasive weeds and site factors on soil microfauna in New Zealand. Pedobiologia (Jena) 45:367–383. doi: 10.1078/0031-4056-00093 CrossRefGoogle Scholar
  48. Yoshimura C, Omura T, Furumai H, Tockner K (2005) Present state of rivers and streams in Japan. River Res Appl 21:93–112. doi: 10.1002/rra.835 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Akira Yoshioka
    • 1
  • Taku Kadoya
    • 1
  • Shin-ichi Suda
    • 1
  • Izumi Washitani
    • 1
  1. 1.Department of Ecosystem Studies, Institute of Agricultural and Life-ScienceThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations