Biological Invasions

, Volume 12, Issue 1, pp 191–209 | Cite as

Reduction in post-invasion genetic diversity in Crangonyx pseudogracilis (Amphipoda: Crustacea): a genetic bottleneck or the work of hitchhiking vertically transmitted microparasites?

  • Johanna G. M. Slothouber Galbreath
  • Judith E. Smith
  • James J. Becnel
  • Roger K. Butlin
  • Alison M. Dunn
Original Paper


Parasites can strongly influence the success of biological invasions. However, as invading hosts and parasites may be derived from a small subset of genotypes in the native range, it is important to examine the distribution and invasion of parasites in the context of host population genetics. We demonstrate that invasive European populations of the North American Crangonyx pseudogracilis have experienced a reduction in post-invasion genetic diversity. We predict that vertically transmitted parasites may evade the stochastic processes and selective pressures leading to enemy release. As microsporidia may be vertically or horizontally transmitted, we compared the diversity of these microparasites in the native and invasive ranges of the host. In contrast to the reduction in host genetic diversity, we find no evidence for enemy release from microsporidian parasites in the invasive populations. Indeed, a single, vertically transmitted, microsporidian sex ratio distorter dominates the microsporidian parasite assemblage in the invasive range and appears to have invaded with the host. We propose that overproduction of female offspring as a result of parasitic sex ratio distortion may facilitate host invasion success. We also propose that a selective sweep resulting from the increase in infected individuals during the establishment may have contributed to the reduction in genetic diversity in invasive Crangonyx pseudogracilis populations.


Biological invasions Enemy release Emergent disease Microsporidia Sex ratio distortion Vertical transmission 



This research was carried out at The University of Leeds. JSG was supported by an ORS award and a University of Leeds John Henry Garner scholarship. Samples were collected with the assistance of an Ann Bishop Travel Award from the British Society for Parasitology. JS and AD acknowledge support from the Natural Environment Research Council and the Biotechnology and Biological Sciences Research Council (NE/DO12937/1). We thank Beth McClymont, Genie White, Lucas Terracina, Joan Jass, William Brooks and Alex Douglas for technical support and two anonymous referees for helpful suggestions.

Supplementary material

10530_2009_9442_MOESM1_ESM.doc (21 kb)
(DOC 90 kb)


  1. Astenei I, Gosling E, Wilson J, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol Ecol 14:1655–1666. doi: 10.1111/j.1365-294X.2005.02530.x CrossRefGoogle Scholar
  2. Baker MD, Vossbrinck CR, Maddox JV, Undeen AH (1994) Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. J Invertebr Pathol 64:100–106. doi: 10.1006/jipa.1994.1077 CrossRefPubMedGoogle Scholar
  3. Bandi C, Dunn AM, Hurst GDD, Rigaud T (2001) Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol 17:88–94. doi: 10.1016/S1471-4922(00)01812-2 CrossRefPubMedGoogle Scholar
  4. Bauer A, Haine ER, Perrot-Minnot MJ, Rigaud T (2005) The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. J Zool 267:39–43. doi: 10.1017/S0952836905007223 CrossRefGoogle Scholar
  5. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572. doi: 10.1126/science.1122033 CrossRefPubMedGoogle Scholar
  6. Bij de Vaate A, Jazdzewski K, Ketelaars AM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi: 10.1139/f02-098 CrossRefGoogle Scholar
  7. Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond B Biol Sci 265:1081–1090. doi: 10.1098/rspb.1998.0402 CrossRefGoogle Scholar
  8. Cezilly F, Gregoire A, Bertin A (2000) Conflict between co-occuring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120:625–630CrossRefPubMedGoogle Scholar
  9. Colautti RI, Ricciardi A, Grigorovich IA, MacIssac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733. doi: 10.1111/j.1461-0248.2004.00616.x CrossRefGoogle Scholar
  10. Colautti RI, Manca M, Viljanen M, Ketelaars HAM, Burgi H, MacIsaac HJ et al (2005) Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsatellites. Mol Ecol 14:1869–1879. doi: 10.1111/j.1365-294X.2005.02565.x CrossRefPubMedGoogle Scholar
  11. Correia AM, Anastacio PM (2008) Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecol Res 23:729–734. doi: 10.1007/s11284-007-0433-5 CrossRefGoogle Scholar
  12. Crawford GI (1937) An amphipod, Eucrangonyx gracilis S. I. Smith, new to Britain. Nature 139:327. doi: 10.1038/139327b0 CrossRefGoogle Scholar
  13. Cristescu MEA, Witt JDS, Grigorovich IA, Hebert PDN, MacIssac HJ (2004) Dispersal of the Ponto-Caspian amphipod Echinogammarus ischnus: invasion waves from the Pleistocene to the present. Heredity 92:197–203. doi: 10.1038/sj.hdy.6800395 CrossRefPubMedGoogle Scholar
  14. Daszak P, Cunningham AA, Hyatt AD (2000) Wildlife ecology–Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287:443–449. doi: 10.1126/science.287.5452.443 CrossRefPubMedGoogle Scholar
  15. Dean MD (2006) A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc Lond B Biol Sci 273:1415–1420. doi: 10.1098/rspb.2005.3453 CrossRefGoogle Scholar
  16. Devin S, Beisel J-N (2008) Geographic patterns in freshwater gammarid invasions: an analysis at the pan-European scale. Aquat Sci 70:100–106. doi: 10.1007/s00027-008-8009-1 CrossRefGoogle Scholar
  17. Dick JTA, Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc R Soc Lond B Biol Sci 267:977–983. doi: 10.1098/rspb.2000.1099 CrossRefGoogle Scholar
  18. Drake JM (2003) The paradox of the parasites: implications for biological invasion. Proc R Soc Lond B Biol Sci 270:S133–S135. doi: 10.1098/rsbl.2003.0056 CrossRefGoogle Scholar
  19. Dunn AM, Dick JTA (1998) Parasitism and epibiosis in native and non-native gammarids in freshwater in Ireland. Ecography 21:593–598. doi: 10.1111/j.1600-0587.1998.tb00551.x CrossRefGoogle Scholar
  20. Dunn AM, Smith JE (2001) Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect 3:381–388. doi: 10.1016/S1286-4579(01)01394-6 CrossRefPubMedGoogle Scholar
  21. Dunn AM, Terry RS, Smith JE (2001) Transovarial transmission in the microsporidia. Adv Parasitol 48:57–100. doi: 10.1016/S0065-308X(01)48005-5 CrossRefPubMedGoogle Scholar
  22. Englisch U, Coleman CO, Wagele JW (2003) First observations on the phylogeny of the families Gammaridae, Crangonyctidae, Melitidae, Niphargidae, Megaluropidae and Oedicerotidae (Amphipoda, Crustacea), using small subunit rDNA gene sequences. J Nat Hist 37:2461–2486. doi: 10.1080/00222930210144352 CrossRefGoogle Scholar
  23. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  24. Gatehouse HS, Malone L (1998) The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J Invertebr Pathol 71:97–105. doi: 10.1006/jipa.1997.4737 CrossRefPubMedGoogle Scholar
  25. Haine ER, Cook JM (2005) Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proc R Soc Lond B Biol Sci 272:421–429. doi: 10.1098/rspb.2004.2956 CrossRefGoogle Scholar
  26. Haine ER, Brondani E, Hume KD, Perrot-Minnot M-J, Gaillard M, Rigaud T (2004) Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effects on reproduction. Int J Parasitol 34:1137–1146. doi: 10.1016/j.ijpara.2004.06.006 CrossRefPubMedGoogle Scholar
  27. Hall TA (2001) Bioedit: biological sequence alignment editor for Windows 95/98/NT edition 5.0.9Google Scholar
  28. Harris PM, Roosa BR, Norment L (2002) Underground dispersal by amphipods (Crangonyx pseudogracilis) between temporary ponds. J Freshwat Ecol 17:589–594Google Scholar
  29. Hatcher MJ, Taneyhill DE, Dunn AM (1999) Population dynamics under parasitic sex ratio distortion. Theor Popul Biol 56:11–28. doi: 10.1006/tpbi.1998.1410 CrossRefPubMedGoogle Scholar
  30. Hatcher MJ, Dunn A, Dick JTA (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271. doi: 10.1111/j.1461-0248.2006.00964.x CrossRefPubMedGoogle Scholar
  31. Holeck KT, Mills EL, MacIsaac HJ, Dochoda MR, Colautti RI, Ricciardi A (2004) Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. Bioscience 54:919–929. doi: 10.1641/0006-3568(2004)054[0919:BTWBIT]2.0.CO;2 CrossRefGoogle Scholar
  32. Holland DG (1976) Distribution of freshwater Malacostraca in area of Mersey and Weaver river authority. Freshw Biol 6:265–276CrossRefGoogle Scholar
  33. Holmes JMC (1975) Crangonyx pseudogracilis Bousfield a freshwater amphipod new to Ireland. Ir Nat J 18:25Google Scholar
  34. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  35. Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B Biol Sci 272:1525–1534. doi: 10.1098/rspb.2005.3056 CrossRefGoogle Scholar
  36. Hynes HBN (1955) The reproductive cycle of some British freshwater Gammaridae. J Ecol 21:352–387Google Scholar
  37. Ironside JE, Dunn AM, Rollinson D, Smith JE (2003) Association with host mitochondrial haplotypes suggests that feminizing microsporidia lack horizontal transmission. J Evol Biol 16:1077–1083. doi: 10.1046/j.1420-9101.2003.00625.x CrossRefPubMedGoogle Scholar
  38. Jass J, Klausmeier B (2003) Utilization of lotic, lentic and temporary habitats by the amphipod Crangonyx gracilis. J Freshwat Ecol 18:635–638Google Scholar
  39. Jazdzewski K, Konopacka A, Grabowski M (2004) Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Divers Distrib 10:81–87. doi: 10.1111/j.1366-9516.2004.00062.x CrossRefGoogle Scholar
  40. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9:393–405. doi: 10.1046/j.1365-2583.2000.00203.x CrossRefPubMedGoogle Scholar
  41. Josens G, Bij de Vaate A, Usseglio-Polatera P, Cammaerts R, Cherot F, Griseg F et al (2005) Native and exotic Amphipoda and other Pericarida in the River Meuse: new assemblages emerge from a fast changing fauna. Hydrobiol 542:203–220. doi: 10.1007/s10750-004-8930-9 CrossRefGoogle Scholar
  42. Jovani R, Tella JL (2006) Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol 22:214–218. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  43. Kanada S, Kuranishi RB, Ishiwata S, Tojo K, Shimizu T, Taira H et al (2007) Distribution of an alien species: Crangonyx floridanus Bousfield (Crustacea: Amphipoda: Crangonyctidae) in Japan. Jap J Limnol 68:449–460CrossRefGoogle Scholar
  44. Kelly DW, Dick JTA (2005) Introduction of the non-indigenous amphipod Gammarus pulex alters population dynamics and diet of juvenile trout Salmo trutta. Freshw Biol 50:127–140. doi: 10.1111/j.1365-2427.2004.01315.x CrossRefGoogle Scholar
  45. Kelly DW, Muirhead JR, Heath DD, MacIsaac HJ (2006) Contrasting patterns of genetic diversity following multiple invasions of fresh and brackish waters. Mol Ecol 15:3641–3653. doi: 10.1111/j.1365-294X.2006.03012.x CrossRefPubMedGoogle Scholar
  46. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefPubMedGoogle Scholar
  47. Krakau M, Thieltges DW, Reise K (2006) Native parasites adopt introduced bivalves of the North Sea. Biol Inv 8:919–925. doi: 10.1007/s10530-005-4734-8 CrossRefGoogle Scholar
  48. Krisp H, Maier G (2005) Consumption of macroinvertberates by invasive and native gammarids: a comparison. J Limnol 64:55–59Google Scholar
  49. Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J et al (2006) Emerging infectious diseases and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:31465–33170. doi: 10.1073/pnas.0506889103 CrossRefGoogle Scholar
  50. MacNeil C, Dick JTA, Hatcher MJ, Terry RS, Smith JE, Dunn AM (2003a) Parasite-mediated predation between native and invasive amphipods. Proc R Soc Lond B Biol Sci 270:1309–1314. doi: 10.1098/rspb.2003.2358 CrossRefGoogle Scholar
  51. MacNeil C, Feilding NJ, Hume KD, Dick JTA, Elwood RW, Hatcher MJ et al (2003b) An acanthocephalan parasite mediates intraguild predation between invasive and native freshwater amphipods (Crustacea). Freshw Biol 48:2085–2093. doi: 10.1046/j.1365-2427.2003.01145.x CrossRefGoogle Scholar
  52. MacNeil C, Dick JTA, Johnson MP, Hatcher MJ, Dunn AM (2004) A species invasion mediated through habitat structure, intraguild predation, and parasitism. Limn Ocean 49:1848–1856CrossRefGoogle Scholar
  53. Maitland P, Adams C (2001) Introduced freshwater invertebrates in Scotland: enhanced biodiversity or a threat to native species? In Conference: alien species: friends or foes? Glasgow. Glasg Nat Hist SocGoogle Scholar
  54. Marr SR, Mautz WJ, Hara AH (2008) Parasite loss and introduced species: a comparison of the parasites of the Puerto Rican tree frog, (Eleutherodactylus coqui), in its native and introduced ranges. Biol Inv 10:1289–1298. doi: 10.1007/s10530-007-9203-0 CrossRefGoogle Scholar
  55. Medoc V, Bollache L, Beisel J-N (2006) Host manipulation of a freshwater crustacean (Gammarus roeseli) by an ancanthocephalan parasite (Polymorphus minutus) in a biological invasion context. Int J Par 36:1351–1358. doi: 10.1016/j.ijpara.2006.07.001 CrossRefGoogle Scholar
  56. Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625. doi: 10.1038/nature01317 CrossRefPubMedGoogle Scholar
  57. Miura O (2007) Molecular genetic approaches to elucidate the ecological and evolutionary issues associated with biological invasions. Ecol Res 22:876–883. doi: 10.1007/s11284-007-0389-5 CrossRefGoogle Scholar
  58. Muller J (2001) Genetic population structure of two cryptic Gammarus fossarum types across a contact zone. J Evol Biol 11:79–101. doi: 10.1007/s000360050067 CrossRefGoogle Scholar
  59. Muller JC, Schramm S, Seitz A (2002) Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshw Biol 47:2039–2048. doi: 10.1046/j.1365-2427.2002.00944.x CrossRefGoogle Scholar
  60. Mulligan CJ, Kitchen A, Miyamoto MM (2006) Comment on ‘Population size does not influence mitochondrial genetic diversity in animals’. Science 314:1390. doi: 10.1126/science.1132585 CrossRefPubMedGoogle Scholar
  61. NDC Publications and US Waterway Data CD, vol 10 (2004) Alexandria, US Army Corps of EngineersGoogle Scholar
  62. Pinkster S, Dieleman J, Platvoet D (1980) The present position of Gammarus tigrinus Sexton, 1930, in the Netherlands, with the description of a newly discovered amphipod species, Crangonyx pseudogracilis Bousfield, 1958 (Crustacea, Amphipoda). Bull Zool Mus Univ Amst 7:33–45Google Scholar
  63. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  64. Prenter J, MacNeil C, Dick JTA, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390. doi: 10.1016/j.tree.2004.05.002 CrossRefPubMedGoogle Scholar
  65. Rigaud T, Moret Y (2003) Differential phenoloxidase activity between native and invasive gammarids infected by local acanthocephalans: differential immunosuppression? Parasitol 127:571–577. doi: 10.1017/S0031182003004050 CrossRefGoogle Scholar
  66. Slothouber Galbreath JGM, Smith JE, Terry RS, Becnel JJ, Dunn AM (2004) Invasion success of Fibrillanosema crangonycis, n. sp., n.g., a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int J Parasitol 34:235–244. doi: 10.1016/j.ijpara.2003.10.009 CrossRefPubMedGoogle Scholar
  67. Stahluhut JK, Liebert AE, Starks PT, Dapporto L, Jaenike J (2006) Wolbachia in the invasive European paper wasp Polistes dominulus. Insect Soc 53:269–273CrossRefGoogle Scholar
  68. Suarez AV, Holway DA, Ward PS (2005) The role of opportunity in the unintentional introduction of nonnative ants. Proc Natl Acad Sci USA 102:17032–17035. doi: 10.1073/pnas.0506119102 CrossRefPubMedGoogle Scholar
  69. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), v 4.0b10. Sinauer, SunderlandGoogle Scholar
  70. Tain L, Perrot-Minnot MJ, Cezilly F (2006) Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity. Proc R Soc Lond B Biol Sci 273:3039–3045. doi: 10.1098/rspb.2006.3618 CrossRefGoogle Scholar
  71. Terry RS, MacNeil C, Dick JTA, Smith JE, Dunn AM (2003) Resolution of a Taxonomic conundrum: an Ultrastructural and Molecular Description of the Life Cycle of Pleistophora mulleri (Pfeiffer 1895; Georgevitch 1929). J Eukaryot Microbiol 50:266–273. doi: 10.1111/j.1550-7408.2003.tb00133.x CrossRefPubMedGoogle Scholar
  72. Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DTJ, Ironside JE et al (2004) Widespread vertical transmission and associated host sex ratio distortion within the eukaryotic phylum Microspora. Proc R Soc Lond B Biol Sci 271:1783–1789. doi: 10.1098/rspb.2004.2793 CrossRefGoogle Scholar
  73. Tompkins DM, White AR, Boots M (2003) Ecological replacement of native red squirrels by invasive greys driven by disease. Ecol Lett 6:189–196. doi: 10.1046/j.1461-0248.2003.00417.x CrossRefGoogle Scholar
  74. Torchin ME, Lafferty KD, Kuris AM (2001) Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biol Inv 3:333–345. doi: 10.1023/A:1015855019360 CrossRefGoogle Scholar
  75. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM (2003) Introduced species and their missing parasites. Nature 421:628–630. doi: 10.1038/nature01346 CrossRefPubMedGoogle Scholar
  76. Van Riel M, Velde G, Rajagopal S, Marguillier S, Dehairs V, Vaate A (2006) Trophic relationships in the Rhine Food Web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565:39–58. doi: 10.1007/s10750-005-1904-8 CrossRefGoogle Scholar
  77. Vossbrinck CR, Baker MD, Didier ES, Debrunner-Vossbrinck BA, Shadduck JA (1993) Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction. J Eukaryot Microbiol 40:354–362. doi: 10.1111/j.1550-7408.1993.tb04928.x CrossRefPubMedGoogle Scholar
  78. Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, Musko IB et al (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116:1941–1953. doi: 10.1111/j.0030-1299.2007.15921.x CrossRefGoogle Scholar
  79. Weeks AR, Stouthammer R (2004) Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proc R Soc Lond B Biol Sci 271:S193–S195. doi: 10.1098/rsbl.2003.0137 CrossRefGoogle Scholar
  80. Weiss LM, Vossbrinck CR (1998) Microsporidiosis: molecular and diagnostic aspects. Adv Parasitol 40:351–395. doi: 10.1016/S0065-308X(08)60127-X CrossRefPubMedGoogle Scholar
  81. Weiss LM, Zhu X, Cali A, Tanowitz HB, Wittner M (1994) Utility of microsporidian rRNA in diagnosis and phylogeny: a review. Folia Parasitol (Praha) 41:81–90Google Scholar
  82. Wittner M (1999) Historic perspective on the microsporidia: expanding horizons. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidiosis. Washington, ASM Press, pp 1–6Google Scholar
  83. Zhang J, Holsinger JR (2003) Systematics of the freshwater amphipod genus Crangonyx (Crangonyctidae) in North America. Memoir number 6. Virginia Museum of Natural History, MartinsvilleGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Johanna G. M. Slothouber Galbreath
    • 1
    • 2
  • Judith E. Smith
    • 1
  • James J. Becnel
    • 3
  • Roger K. Butlin
    • 4
  • Alison M. Dunn
    • 1
  1. 1.Faculty of Biological Sciences, Institute of Integrative and Comparative BiologyUniversity of LeedsLeedsUK
  2. 2.Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
  3. 3.USDA/ARSCenter for Medical, Agricultural and Veterinary EntomologyGainesvilleUSA
  4. 4.Department of Animal and Plant SciencesUniversity of SheffieldWestern BankSheffieldUK

Personalised recommendations