Biological Invasions

, Volume 11, Issue 4, pp 941–950 | Cite as

A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales

  • Ann Milbau
  • Jane C. Stout
  • Bente J. Graae
  • Ivan Nijs
Original Paper


Results from experiments studying different factors determining invasibility (e.g. land use, disturbance, biotic interactions) at different spatial scales are mainly used in isolation, probably because a methodology for integration is lacking. Recent studies show that factors affecting invasibility most likely do so in a hierarchical manner, with different factors acting more strongly at different spatial scales. Climate can be considered the dominant factor at the continental scale, while at regional and landscape scale topography, land cover and land use become increasingly important. At smaller spatial scales, soil type, disturbance, biotic interactions, resources, and microclimate may become significant. In the current paper, we propose a hierarchical framework for combining results from different types of studies. In this hierarchical system, factors operating at a smaller scale are subordinate to factors operating at a larger scale, but if conditions at higher levels are satisfied, the small-scale factors may become indispensable for making accurate predictions. Depending on the aim of the study, the accuracy of prediction can be selected by the researcher, which in its turn determines which data are required. We discuss several applications of the framework and indicate some options for future research. Although the complexity of natural systems presents fundamental limits to predictions, we think this framework can provide a useful tool for the identification of areas of risk for biological invasions, for improving our understanding of invasibility, and for identifying gaps in our current knowledge.


Hierarchical framework Integration Invasibility Plant invasion Spatial scale 



This research was part of the Irish Biochange project, funded by the Environmental Protection Agency as part of the ERTDI Programme, under the National Development Plan of the Irish Government. Ann Milbau holds a postdoctoral research grant from the Fund for Scientific Research—Flanders.


  1. Alpert P et al (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect Plant Ecol Evol Syst 3:52–66. doi: 10.1078/1433-8319-00004 CrossRefGoogle Scholar
  2. Andrews M et al (2005) Extension growth of Impatiens glandulifera at low irradiance: importance of nitrate and potassium accumulation. Ann Bot (Lond) 95:641–648. doi: 10.1093/aob/mci059 CrossRefGoogle Scholar
  3. Bartuszevige AM et al (2006) The relative importance of landscape and community features in the invasion of an exotic shrub in a fragmented landscape. Ecography 29:213–222. doi: 10.1111/j.2006.0906-7590.04359.x CrossRefGoogle Scholar
  4. Beerling DJ, Perrins JM (1993) Impatiens Glandulifera Royle (Impatiens Roylei Walp.). J Ecol 81:367–382. doi: 10.2307/2261507 CrossRefGoogle Scholar
  5. Bellingham PJ (1998) Shrub succession and invasibility in a New Zealand montane grassland. Austral Ecol 23:562–573. doi: 10.1111/j.1442-9993.1998.tb00766.x CrossRefGoogle Scholar
  6. Callaway RM et al (2004) Soil biota and exotic plant invasion. Nature 427:731–733. doi: 10.1038/nature02322 PubMedCrossRefGoogle Scholar
  7. Cavieres LA et al (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high andes of central Chile. Arct Antarct Alp Res 39:229–236. doi: 10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 CrossRefGoogle Scholar
  8. Chittka L, Schürkens S (2001) Successful invasion of a floral market. Nature 411:653–653. doi: 10.1038/35079676 PubMedCrossRefGoogle Scholar
  9. Collingham YC et al (2000) Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. J Appl Ecol 37:13–27. doi: 10.1046/j.1365-2664.2000.00556.x CrossRefGoogle Scholar
  10. Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868. doi: 10.1126/science.291.5505.864 PubMedCrossRefGoogle Scholar
  11. D’Antonio CM (1993) Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 74:83–95. doi: 10.2307/1939503 CrossRefGoogle Scholar
  12. Davis MA (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704. doi: 10.1111/j.2005.0906-7590.04205.x CrossRefGoogle Scholar
  13. Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428. doi: 10.1046/j.1461-0248.2001.00246.x CrossRefGoogle Scholar
  14. Davis AJ et al (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786. doi: 10.1038/35842 PubMedCrossRefGoogle Scholar
  15. Davis MA et al (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  16. Davis MA et al (2001) Charles S. Elton and the dissociation of invasion ecology from the rest of ecology. Divers Distrib 7:97–102. doi: 10.1046/j.1472-4642.2001.00099.x CrossRefGoogle Scholar
  17. Diez JM, Pulliam HR (2007) Hierarchical analysis of species distributions and abundance across environmental gradients. Ecology 88:3144–3152. doi: 10.1890/07-0047.1 PubMedCrossRefGoogle Scholar
  18. Elton CS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  19. Foster BL et al (2002) Invasibility and compositional stability in a grassland community: relationships to diversity and extrinsic factors. Oikos 99:300–307. doi: 10.1034/j.1600-0706.2002.990210.x CrossRefGoogle Scholar
  20. Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geogr 19:474–499. doi: 10.1177/030913339501900403 CrossRefGoogle Scholar
  21. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New YorkGoogle Scholar
  22. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  23. Harrison S (1999) Local and regional diversity in a patchy landscape: native, alien, and endemic herbs on serpentine. Ecology 1:70–80Google Scholar
  24. Hilbert DW, Ostendorf B (2001) The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecol Model 146:311–327. doi: 10.1016/S0304-3800(01)00323-4 CrossRefGoogle Scholar
  25. Huebner C, Tobin P (2006) Invasibility of mature and 15-year-old deciduous forests by exotic plants. Plant Ecol 186:57–68. doi: 10.1007/s11258-006-9112-9 CrossRefGoogle Scholar
  26. Joshi J, Vrieling K (2005) The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores. Ecol Lett 8:704–714. doi: 10.1111/j.1461-0248.2005.00769.x CrossRefGoogle Scholar
  27. Kakembo V et al (2007) Topographic controls on the invasion of Pteronia incana (Blue bush) onto hillslopes in Ngqushwa (formerly Peddie) district, Eastern Cape, South Africa. Catena 70:185–199. doi: 10.1016/j.catena.2006.08.005 CrossRefGoogle Scholar
  28. Knops JMH et al (1995) Introduced and native plants of the Hastings reservation central coastal California: a comparison. Biol Conserv 71:115–123. doi: 10.1016/0006-3207(94)00008-E CrossRefGoogle Scholar
  29. Kriticos DJ et al (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124. doi: 10.1046/j.1365-2664.2003.00777.x CrossRefGoogle Scholar
  30. Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226. doi: 10.1016/S0006-3207(03)00294-5 CrossRefGoogle Scholar
  31. Leishman MR, Thomson VP (2005) Experimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertile Hawkesbury Sandstone soils, Sydney. Aust J Ecol 93:38–49Google Scholar
  32. Levin SA (1992) The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73:1943–1967. doi: 10.2307/1941447 CrossRefGoogle Scholar
  33. Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854. doi: 10.1126/science.288.5467.852 PubMedCrossRefGoogle Scholar
  34. Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi: 10.2307/3546992 CrossRefGoogle Scholar
  35. Lockwood JL et al (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 PubMedCrossRefGoogle Scholar
  36. Maron JL, Connors PG (1996) A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302–312. doi: 10.1007/BF00328732 CrossRefGoogle Scholar
  37. Maron JL, Jefferies RL (1999) Bush Lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80:443–454CrossRefGoogle Scholar
  38. McMahon SM, Diez JM (2007) Scales of association: hierarchical linear models and the measurement of ecological systems. Ecol Lett 10:437–452. doi: 10.1111/j.1461-0248.2007.01036.x PubMedCrossRefGoogle Scholar
  39. Meiners SJ (2007) Native and exotic plant species exhibit similar population dynamics during succession. Ecology 88:1098–1104. doi: 10.1890/06-1505 PubMedCrossRefGoogle Scholar
  40. Milbau A, Stout JC (2008) Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv Biol 22:308–317. doi: 10.1111/j.1523-1739.2007.00877.x PubMedCrossRefGoogle Scholar
  41. Milbau A et al (2003) Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phytol 159:657–667. doi: 10.1046/j.1469-8137.2003.00833.x CrossRefGoogle Scholar
  42. Milbau A et al (2005) Invasion in grassland gaps: the role of neighbourhood richness, light availability and species complementarity during two successive years. Funct Ecol 19:27–37. doi: 10.1111/j.0269-8463.2005.00939.x CrossRefGoogle Scholar
  43. Ohlemüller R et al (2006) Local vs. regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112:493–501. doi: 10.1111/j.0030-1299.2006.13887.x CrossRefGoogle Scholar
  44. Parker IM (1997) Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457–1470Google Scholar
  45. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248. doi: 10.1111/j.1523-1739.2004.00300.x CrossRefGoogle Scholar
  46. Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413. doi: 10.1007/s10530-005-6419-8 CrossRefGoogle Scholar
  47. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  48. Pearson RG et al (2002) SPECIES: a Spatial Evaluation of Climate Impact on the Envelope of Species. Ecol Model 154:289–300. doi: 10.1016/S0304-3800(02)00056-X CrossRefGoogle Scholar
  49. Pearson RG et al (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298. doi: 10.1111/j.0906-7590.2004.03740.x CrossRefGoogle Scholar
  50. Pino J et al (2006) Invasibility of four plant communities in the Llobregat delta (Catalonia, NE of Spain) in relation to their historical stability. Hydrobiologia 570:257–263. doi: 10.1007/s10750-006-0189-x CrossRefGoogle Scholar
  51. Prieur-Richard A-H et al (2002) Plant diversity, herbivory and resistance of a plant community to invasion in Mediterranean annual communities. Oecologia 130:96–104Google Scholar
  52. Pysek P, Prach K (1993) Plant invasions and the role of riparian habitats—a comparison of 4 species alien to Central-Europe. J Biogeogr 20:413–420. doi: 10.2307/2845589 CrossRefGoogle Scholar
  53. Raudenbush SW, Bryk AS (2002) Hierarchical linear models: applications and data analysis methods. Sage Publications, Thousand OaksGoogle Scholar
  54. Reinhart K et al (2006) Facilitation and inhibition of seedlings of an invasive tree (Acer platanoides) by different tree species in a mountain ecosystem. Biol Invasions 8:231–240. doi: 10.1007/s10530-004-5163-9 CrossRefGoogle Scholar
  55. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi: 10.1016/S0169-5347(02)02495-3 CrossRefGoogle Scholar
  56. Silvertown J et al (1994) Spatial competition between grasses—rates of mutual invasion between four species and the interaction with grazing. J Ecol 82:31–38. doi: 10.2307/2261383 CrossRefGoogle Scholar
  57. Smith MD, Knapp AK (2001) Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. Int J Plant Sci 162:785–792. doi: 10.1086/320774 CrossRefGoogle Scholar
  58. Svenning JC, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033. doi: 10.1111/j.1365-2699.2005.01219.x CrossRefGoogle Scholar
  59. Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273. doi: 10.1111/j.1469-8137.2007.02207.x PubMedCrossRefGoogle Scholar
  60. Thompson K et al (1995) Native and alien invasive plants: more of the same? Ecography 18:390–402. doi: 10.1111/j.1600-0587.1995.tb00142.x CrossRefGoogle Scholar
  61. Thuiller W et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol 11:2234–2250. doi: 10.1111/j.1365-2486.2005.001018.x CrossRefGoogle Scholar
  62. Titze A (2000) The efficiency of insect pollination of the neophyte Impatiens glandulifera (Balsaminaceae). Nord J Bot 20:33–42. doi: 10.1111/j.1756-1051.2000.tb00729.x CrossRefGoogle Scholar
  63. Vilà M, Pujades J (2001) Land-use and socio-economic correlates of plant invasions in European and North African countries. Biol Conserv 100:397–401. doi: 10.1016/S0006-3207(01)00047-7 CrossRefGoogle Scholar
  64. Von Holle B, Motzkin G (2007) Historical land use and environmental determinants of nonnative plant distribution in coastal southern New England. Biol Conserv 136:33–43. doi: 10.1016/j.biocon.2006.10.044 CrossRefGoogle Scholar
  65. Williams PA, Karl BJ (1996) Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. N Z J Ecol 20:127–145Google Scholar
  66. Willis KJ, Whittaker RJ (2002) Species diversity—scale matters. Science 295:1245–1248. doi: 10.1126/science.1067335 PubMedCrossRefGoogle Scholar
  67. Wilson JB et al (1992) Distributions and climatic correlations of some exotic species along roadsides in South Island, New-Zealand. J Biogeogr 19:183–193. doi: 10.2307/2845504 CrossRefGoogle Scholar
  68. Zavaleta ES, Hulvey KB (2007) Realistic variation in species composition affects grassland production, resource use and invasion resistance. Plant Ecol 188:39–51. doi: 10.1007/s11258-006-9146-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ann Milbau
    • 1
    • 2
    • 3
  • Jane C. Stout
    • 3
  • Bente J. Graae
    • 2
  • Ivan Nijs
    • 1
  1. 1.Research Group of Plant and Vegetation Ecology, Department of BiologyUniversity of AntwerpWilrijkBelgium
  2. 2.Climate Impacts Research Centre, Department of Ecology and Environmental ScienceUmeå UniversityAbiskoSweden
  3. 3.School of Natural Sciences, Botany BuildingTrinity College DublinDublin 2Ireland

Personalised recommendations