Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger



To achieve continuous production of fructooligosaccharides (FOS) by recycling of the mycelial cells containing the thermal-stable β-fructofuranosidase in Aspergillus niger without immobilization.


The thermal-stable β-fructofuranosidase FopA-V1 was successfully expressed in A. niger ATCC 20611 under the control of the constitutive promoter PgpdA. The engineered A. niger strain FV1-11 produced the β-fructofuranosidase with improved thermostability, which remained 91.2% of initial activity at 50 °C for 30 h. Then its mycelial β-fructofuranosidase was recycled for the synthesis of FOS. It was found that the enzyme still had 79.3% of initial activity after being reused for six consecutive cycles, whereas only 62.3% β-fructofuranosidase activity was detected in the parental strain ATCC 20611. Meanwhile, the FOS yield of FV1-11 after six consecutive cycles reached 57.1% (w/w), but only 51.0% FOS yield was detected in ATCC 20611.


The thermal-stable β-fructofuranosidase produced by A. niger can be recycled to achieve continuous synthesis of FOS with high efficiency, providing a powerful and economical strategy for the industrial production of FOS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Choukade R, Kango N (2019) Characterization of a mycelialfructosyltransferase from Aspergillus tamarii NKRC 1229 for efficient synthesis of fructooligosaccharides. Food Chem 286:434–440.

    CAS  Article  PubMed  Google Scholar 

  2. Chuankhayan P, Hsieh CY, Huang YC, Hsieh YY, Guan HH, Hsieh YC, Tien YC, Chen CD, Chiang CM, Chen CJ (2010) Crystal structures of Aspergillus japonicas fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. J Biol Chem 285(30):23251–23264.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Dominguez A, Rodrigues LR, Lima N, Teixeira J (2014) An overview of the recent developments on fructooligosaccharide production and applications. Food Bioprocess Technol 7(2):324–337.

    CAS  Article  Google Scholar 

  4. Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128(1):204–211.

    CAS  Article  PubMed  Google Scholar 

  5. Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructooligosaccharide-producing β-fructofuranosidase from Aspergillus niger ATCC 20611. Agric Biol Chem 53(3):667–673.

    CAS  Article  Google Scholar 

  6. Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, Shiloach J (2007) Expression of human alpha1-proteinase inhibitor in Aspergillus niger. Microb Cell Fac 6:34.

    CAS  Article  Google Scholar 

  7. Kluge J, Terfehr D, Kück U (2018) Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol 102(15):6357–6372.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Lubertozzi D, Keasling JD (2008) Expression of a synthetic Artemesia annua amorphadiene synthase in Aspergillus nidulans yields altered product distribution. J Ind Microbiol Biotechnol 35(10):1191–1198.

    CAS  Article  PubMed  Google Scholar 

  9. Maiorano AE, Piccoli RM, da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30(11):1867–1877.

    CAS  Article  PubMed  Google Scholar 

  10. Ohta Y, Hatada Y, Hidaka Y, Shimane Y, Usui K, Ito T, Fujita K, Yokoi G, Mori M, Sato S, Miyazaki T, Nishikawa A, Tonozuka T (2014) Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 β-fructofuranosidase. Appl Microbiol Biotechnol 98(15):6667–6677.

    CAS  Article  PubMed  Google Scholar 

  11. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rustiguel CB, Jorge JA, Guimaraes LH (2015) Characterization of a thermo-tolerant mycelial β-fructofuranosidase from Aspergillus phoenicis under submerged fermentation using wheat bran as carbon source. Biocatal Agric Biotechnol 4(3):362–369.

    Article  Google Scholar 

  13. Sangeetha PT, Ramesh MN, Prapulla SG (2005) Fructooligosaccharide production using fructosyltransferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem 40(3/4):1085–1088.

    CAS  Article  Google Scholar 

  14. Trollope KM, Görgens JF, Volschenk H (2015) Semirational directed evolution of loop regions in Aspergillus japonicus β-fructofuranosidase for improved fructooligosaccharide production. Appl Environ Microbiol 81(20):7319–7329.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Yanai K, Nakane A, Kawate A, Hirayama M (2001) Molecular cloning and characterization of the fructooligosaccharide-producing β-fructofuranosidase gene from Aspergillus niger ATCC 20611. Biosci Biotechnol Biochem 65(4):766–773.

    CAS  Article  PubMed  Google Scholar 

  16. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41(11):973–981.

    CAS  Article  PubMed  Google Scholar 

  17. Zhang L, An J, Li L, Wang H, Liu D, Li N, Cheng H, Deng Z (2016) Highly efficient fructooligosaccharides production by an erythritol-producing yeast Yarrowia lipolytica displaying fructosyltransferase. J Agric Food Chem 64(19):3828–3837.

    CAS  Article  PubMed  Google Scholar 

  18. Zhang J, Liu C, Xie Y, Li N, Ning Z, Du N, Huang X, Zhong Y (2017) Enhancing fructooligosaccharides production by genetic improvement of the industrial fungus Aspergillus niger ATCC 20611. J Biotechnol 249:25–33.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the grants from the National Key R&D Program of China (No. 2018YFA0900503), the Shandong Key Research and Development Program (No. ZR2019ZD19), and the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University (2020QNQT006).

Supporting information

Supplementary Table 1—Primers used in this study.

Supplementary Figure 1—Chromatography profiles of FOS production.

Author information



Corresponding authors

Correspondence to Feng Huang or Yaohua Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 202 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Wang, L. et al. Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger. Biotechnol Lett (2021).

Download citation


  • Aspergillus niger
  • Continuous production
  • Fructooligosaccharides (FOS)
  • Thermostability
  • β-fructofuranosidase