Co-delivery of miRNA-15a and miRNA-16–1 using cationic PEGylated niosomes downregulates Bcl-2 and induces apoptosis in prostate cancer cells

Abstract

Objective

Tumor suppressor miRNAs, miR-15a and miR-16–1, with high-specificity and oncogenic targeting of Bcl-2, can target tumor tissues. Disadvantages of the clinical application of free miRNAs include poor cellular uptake and instability in plasma, which can be partially improved by using nanocarriers to deliver anti-cancer agents to the tumor cell.

Method

In this study, cationic niosomes were designed and optimized with the specific formulation. Then, the physical characteristics, the cytotoxicity, the impact of transfected miRNAs on the expression of the Bcl-2 gene, and the apoptosis rate of the different formulation into prostate cancer cell were determined.

Results

The optimum formulation containing tween-60: cholesterol: DOTAP: DSPE-PEG2000 at 70:30:25:5 demonstrated that the vesicle size and zeta potentials were 69.7 nm and + 14.83 mV, respectively. Additionally, noisome-loaded miRNAs had higher toxicity against cancer cells comparing with free forms. The transfection of PC3 cells with the combination therapy of nanocarriers loaded of two miRNAs led to a significant decrease in the expression of the Bcl-2 gene and increased the degree of cell death in PC3 cells compared with other treatment groups, and the synergistic effects of co-delivery of miR-15a and miR-16–1 on prostate cancer cells were shown.

Conclusion

According to the results, it seems the designed niosomes containing miR-15a and miR-16–1 can target the Bcl-2 gene and provide a cheap, applicable, cost-effective, and safe drug delivery system against prostate cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Acunzo M, Croce CM (2016) Downregulation of miR-15a and miR-16–1 at 13q14 in chronic lymphocytic leukemia. Clin Chem 62:655–656. https://doi.org/10.1373/clinchem.2015.240036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Albamonte MS, Willis MA, Albamonte MI, Jensen F, Espinosa MB, Vitullo AD (2008) The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis. Human Reprod 23:1895–1901

    CAS  Article  Google Scholar 

  3. Aqeilan R, Calin G, Croce C (2009) Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16–1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220. https://doi.org/10.1038/cdd.2009.69

    CAS  Article  PubMed  Google Scholar 

  4. Aqeilan RI, Calin GA, Croce CM (2010) miR-15a and miR-16–1 in cancer: discovery, function and future perspectives. Cell Death Differ 17:215–220. https://doi.org/10.1038/cdd.2009.69

    CAS  Article  PubMed  Google Scholar 

  5. Bai Z et al (2019) Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 7:1209–1225. https://doi.org/10.1039/C8TB02946F

    CAS  Article  PubMed  Google Scholar 

  6. Bandi N et al (2009) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer Res 69:5553–5559

    CAS  Article  Google Scholar 

  7. Baraban JM, Shah A, Fu X (2018) Chapter one - multiple pathways mediate microRNA degradation: focus on the translin/trax RNase complex. In: Pasternak GW, Coyle JT (eds) Advances in pharmacology, vol 82. Academic Press, New York, pp 1–20

    Google Scholar 

  8. Bonci D et al (2008) The miR-15a–miR-16–1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271. https://doi.org/10.1038/nm.1880

    CAS  Article  PubMed  Google Scholar 

  9. Cai CK et al (2012) miR-15a and miR-16–1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep 28:1764–1770. https://doi.org/10.3892/or.2012.1995

    CAS  Article  PubMed  Google Scholar 

  10. Campbell KJ, Tait SWG (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Biol 8:180002. https://doi.org/10.1098/rsob.180002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Chen L, Tang L, Calin G, Croce CM, Kipps TJ (2006) Expression of microRNA (miR) miR-15a/miR-16–1 downregulates expression of BCL-2 protein in chronic lymphocytic leukemia. Blood 108:2796–2796. https://doi.org/10.1182/blood.V108.11.2796.2796

    Article  Google Scholar 

  12. Cimmino A et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944–13949. https://doi.org/10.1073/pnas.0506654102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Ding L, Hu X-M, Wu H, Liu G-X, Gao Y-J, He D-M, Zhang Y (2013) Combined transfection of Bcl-2 siRNA and miR-15a oligonucleotides enhanced methotrexate-induced apoptosis in Raji cells. Cancer Biol Med 10:16

    PubMed  PubMed Central  Google Scholar 

  14. Guo WT, Wang Y (2019) Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cell Mol Life Sci 76:1697–1711. https://doi.org/10.1007/s00018-019-03020-9

    CAS  Article  PubMed  Google Scholar 

  15. Haghiralsadat F, Amoabediny G, Helder MN, Naderinezhad S, Sheikhha MH, Forouzanfar T, Zandieh-Doulabi B (2018a) A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery. Artif Cells Nanomed Biotechnol 46:169–177. https://doi.org/10.1080/21691401.2017.1304403

    CAS  Article  PubMed  Google Scholar 

  16. Haghiralsadat F, Amoabediny G, Naderinezhad S, Forouzanfar T, Helder MN, Zandieh-Doulabi B (2018b) Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artif Cells Nanomed Biotechnol 46:684–692. https://doi.org/10.1080/21691401.2018.1434533

    CAS  Article  PubMed  Google Scholar 

  17. Haghiralsadat F, Amoabediny G, Naderinezhad S, Zandieh-Doulabi B, Forouzanfar T, Helder MN (2018c) Codelivery of doxorubicin and JIP1 siRNA with novel EphA2-targeted PEGylated cationic nanoliposomes to overcome osteosarcoma multidrug resistance. Int J Nanomed 13:3853–3866. https://doi.org/10.2147/ijn.S150017

    CAS  Article  Google Scholar 

  18. Hemati M, Haghiralsadat F, Jafary F, Moosavizadeh S, Moradi A (2019) Targeting cell cycle protein in gastric cancer with CDC20siRNA and anticancer drugs (doxorubicin and quercetin) co-loaded cationic PEGylated nanoniosomes. Int J Nanomed 14:6575–6585

    CAS  Article  Google Scholar 

  19. Hsu S-h et al (2013) Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomed Nanotechnol Biol Med 9:1169–1180

    CAS  Article  Google Scholar 

  20. Huang W (2017) MicroRNAs: biomarkers, diagnostics, and therapeutics. Methods Mol Biol (Clifton, NJ) 1617:57–67. https://doi.org/10.1007/978-1-4939-7046-9_4

    CAS  Article  Google Scholar 

  21. Kang W et al (2015) Targeting of YAP1 by microRNA-15a and microRNA-16–1 exerts tumor suppressor function in gastric adenocarcinoma. Mol Cancer 14:52

    Article  Google Scholar 

  22. Kopper L, Tímár J (2005) Genomics of prostate cancer: Is there anything to „translate”? Pathol Oncol Res 11:197–203. https://doi.org/10.1007/BF02893851

    CAS  Article  PubMed  Google Scholar 

  23. Liu J et al (2014) Loss of p53 and altered miR15-a/16–1 MCL-1 pathway in CLL: insights from TCL1-Tg: p53−/− mouse model and primary human leukemia cells. Leukemia 28:118

    CAS  Article  Google Scholar 

  24. Naderinezhad S, Amoabediny G, Haghiralsadat F (2017) Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers RSC. Advances 7:30008–30019. https://doi.org/10.1039/C7RA01736G

    CAS  Article  Google Scholar 

  25. Palanichamy JK, Rao DS (2014) miRNA dysregulation in cancer: towards a mechanistic understanding. Front Genet 5:54–54. https://doi.org/10.3389/fgene.2014.00054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Patel N, Garikapati KR, Ramaiah MJ, Polavarapu KK, Bhadra U, Bhadra MP (2016) miR-15a/miR-16 induces mitochondrial dependent apoptosis in breast cancer cells by suppressing oncogene BMI1. Life Sci 164:60–70. https://doi.org/10.1016/j.lfs.2016.08.028

    CAS  Article  PubMed  Google Scholar 

  27. Pejin B, Jovanovic KK, Mojovic M, Savic AG (2013) New and highly potent antitumor natural products from marine-derived fungi: Covering the period from 2003 to 2012. Curr Top Med Chem 13:2745–2766

    CAS  Article  Google Scholar 

  28. Pejin B, Jovanovic KK, Savic AG (2015) New antitumour natural products from marine red algae: covering the period from 2003 to 2012. Mini Rev Med Chem 15:720–730

    CAS  Article  Google Scholar 

  29. Porkka KP et al (2011) The miR-15a-miR-16-1 locus is homozygously deleted in a subset of prostate cancers. Genes Chromos Cancer 50:499–509

    CAS  Article  Google Scholar 

  30. Qian H, Tay CY, Setyawati MI, Chia SL, Lee DS, Leong DT (2017) Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chem Sci 8:1062–1067. https://doi.org/10.1039/c6sc01829g

    CAS  Article  PubMed  Google Scholar 

  31. Sambri I, Capasso R, Pucci P, Perna AF, Ingrosso D (2011) The microRNA 15a/16–1 cluster down-regulates protein repair isoaspartyl methyltransferase in hepatoma cells: implications for apoptosis regulation. J Biol Chem 286:43690–43700. https://doi.org/10.1074/jbc.M111.290437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Sun CY et al (2013) miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis 34:426–435. https://doi.org/10.1093/carcin/bgs333

    CAS  Article  PubMed  Google Scholar 

  33. Xia L et al (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123:372–379. https://doi.org/10.1002/ijc.23501

    CAS  Article  PubMed  Google Scholar 

  34. Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig 5:179–181. https://doi.org/10.4103/2230-973X.167646

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang XJ, Ye H, Zeng CW, He B, Zhang H, Chen YQ (2010) Dysregulation of miR-15a and miR-214 in human pancreatic cancer. J Hematol Oncol 3:46

    CAS  Article  Google Scholar 

  36. Zhou K, Liu M, Cao Y (2017) New insight into microRNA functions in cancer: oncogene-microRNA-tumor suppressor gene network. Front Mol Biosci 4:46–46. https://doi.org/10.3389/fmolb.2017.00046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu C-S, Zhu L, Tan D-A, Qiu X-Y, Liu C-Y, Xie S-S, Zhu L-Y (2019) Avenues toward microRNA detection in vitro: a review of technical advances and challenges. Comput Struct Biotechnol J 17:904–916. https://doi.org/10.1016/j.csbj.2019.06.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fateme Haghiralsadat.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaffari, M., Kalantar, S.M., Hemati, M. et al. Co-delivery of miRNA-15a and miRNA-16–1 using cationic PEGylated niosomes downregulates Bcl-2 and induces apoptosis in prostate cancer cells. Biotechnol Lett (2021). https://doi.org/10.1007/s10529-021-03085-2

Download citation

Keywords

  • Prostate cancer
  • Nanocarrier
  • Bcl-2
  • Apoptosis
  • miR-15a
  • miR-16–1
  • Niosome