Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi

Abstract

Objective

The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi.

Results

The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w).

Conclusion

The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aguilar R, Ramirez JA, Garrote G, Vázquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318

    Article  Google Scholar 

  2. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biot 4(82):340–349

    Article  CAS  Google Scholar 

  3. Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol 157:214–222

    CAS  PubMed  Article  Google Scholar 

  4. Aristizabal RVS (2013) Produção de leveduras oleaginosas em meio de cultura contendo hidrolisado de bagaço de cana-de-açúcar. Dissertation, State University of Campinas.

  5. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol. https://doi.org/10.1155/2014/463074

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R (2017) Microbial Oil - A Plausible Alternate Resource for Food and Fuel Application. Bioresour Technol 233:423–432. https://doi.org/10.1016/j.biortech.2017.03.006

    CAS  Article  PubMed  Google Scholar 

  7. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Article  Google Scholar 

  8. Bonturi N, Matsakas L, Nilsson R, Christakopoulos P, Miranda E, Berglund K, Rova U (2015) Single Cell Oil Producing Yeasts Lipomyces starkeyi and Rhodosporidium toruloides: Selection of Extraction Strategies and Biodiesel Property Prediction. Energies 8(6):5040–5052

    CAS  Article  Google Scholar 

  9. Bonturi N, Crucello A, Viana AJC, Miranda EA (2017) Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 57:16–25

    CAS  Article  Google Scholar 

  10. Brandenburg J, Blomqbist J, Pickova J, Bonturi N, Sandgren M, Passoth V (2016) Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast 33:451–462

    CAS  PubMed  Article  Google Scholar 

  11. Canilha L, Carvalho W, Felipe M, Silva JB, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92

    CAS  PubMed  Article  Google Scholar 

  12. Canilha L, Santos VT, Rocha GJ, Silva JB, Giulietti M, Silva SS, Felipe MG, Ferraz A, Milagres AM, Carvalho W (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38(9):1467–1475

    CAS  PubMed  Article  Google Scholar 

  13. Canilha L, Rodrigues RDCLB, Antunes FAF, Chandel AK, Milessi TSDS, Felipe MDGA, Silva SSD (2013) Bioconversion of Hemicellulose from Sugarcane Biomass Into Sustainable Products. In: Ekinci D (ed) Biochemistry, Genetics and Molecular Biology. InTech, London, pp 15–44

    Google Scholar 

  14. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950

    CAS  PubMed  Article  Google Scholar 

  15. Chandel AK, Singh OV, Rao LV (2010) Biotechnological Applications of Hemicellulosic derived sugars:state-of-the-art. Sustain Biotechnol. https://doi.org/10.1007/978-90-481-3295-9_4

    Article  Google Scholar 

  16. Chandel AK, Silva SS, Singh OV (2011) Detoxification of Lignocellulosic Hydrolysates for improved bioethanol production. InTech, London, pp 225–246

    Google Scholar 

  17. Christophe G, Kumar V, Nouaille R, Gaudet G, Fontanille P, Pandey A, Soccol CR, Larroche C (2012) Recent Developments in Microbial Oils Production: a Possible Alternative to Vegetable Oils for Biodiesel Without Competition with Human Food? Braz Arch Biol Technol 55(1):29–46

    CAS  Article  Google Scholar 

  18. Dien BS, Slininger PJ, Kurtzman CP, Moser BR, O’bryan PJ, (2016) Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environ Sci 3(1):1–20

    CAS  Article  Google Scholar 

  19. Feofilova EP, Sergeeva YE, Ivashechkin AA (2010) Biodiesel-fuel: Content, production, producers, contemporary biotechnology (Review). Appl Biochem Microbiol 46(4):369–378

    CAS  Article  Google Scholar 

  20. Furlan FF, Filho RT, Pinto FHPB, Costa CBB, Cruz AJG, Giordano RLC, Giordano RC (2013) Bioelectricity versus bioethanol from sugarcane bagasse. Biotechnol Biofuels 6:142

    PubMed  PubMed Central  Article  Google Scholar 

  21. Galán B, Santos-Merino M, Nogales J, de la Cruz F, García JL (2019) Microbial Oils as Nutraceuticals and Animal Feeds. In: Goldfine H (ed) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham

    Google Scholar 

  22. Galbe M, Wallberg O (2019) Pretreatment for biorefneries: a review of common methods for eficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12:294

    PubMed  PubMed Central  Article  Google Scholar 

  23. Gao Q, Cui Z, Zhang J, Bao J (2014) Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresour Technol 152:552–556

    CAS  PubMed  Article  Google Scholar 

  24. Gao R, Li Z, Zhou X, Bao W, Cheng S, Zheng L (2020) Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels 13:3

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Garzón, C SL (2009) Produção microbiana de lipídios. Dissertation, State University of Campinas.

  26. Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24

    CAS  PubMed  Article  Google Scholar 

  27. Gong Z, Shen H, Zhou W, Wang Y, Yang X, Zhao ZK (2015) Efficient conversion of acetate into lipids by the oleaginous yeast Cryptococcus curvatus. Biotechnol Biofuels 8:189

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Gouveia ERN, Souto-Maior AM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32(6):1500–1503

    CAS  Article  Google Scholar 

  29. Hacisalihoğlu B, Turanli-Yildiz B, Çakar ZP (2018) Evolutionary Engineering Applications in Microbial Ethanol Production. JSM Biotechnol Biomed Eng 5(1):1082

    Google Scholar 

  30. Helmberger S, Kahr H, Jäger AG (2011) Yeast adaptation on the substrate straw. Bioenergy Technology (BE), in: World Renewable Energy Congress, Linkoping, Sweden 492–499. https://www.researchgate.net/publication/269131598_Yeast_Adaptation_on_the_Substrate_Straw Acessed January 2016.

  31. Huang XF, Liu JN, Lu LJ, Peng KM, Yang GX, Liu J (2016) Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. Bioresour Technol 206:141–149

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Juanssilfero AB, Kahar P, Amza RL, Miyamoto N, Otsuka H, Matsumoto H, Kihira C, Thontowi A, Yopi OC, Prasetya B, Kondo A (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125:695–702

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Juanssilfero AB, Kahar P, Amza RL, Yopi SK, Ogino C, Prasetya B, Kondo A (2019) Lipid production by Lipomyces starkeyi using sap squeezed from felled old oil palm Trunks. J Biosci Bioeng 127(6):726–731

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46(2):126–131

    CAS  Article  Google Scholar 

  35. Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Lenihan P, Orozco A, O’neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156(2):395–403

    CAS  Article  Google Scholar 

  37. Li Q, Metthew Lam LK, Xun L (2011) Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases. Biodegradation 22(6):1227–1237

    CAS  PubMed  Article  Google Scholar 

  38. Liu JX, Yue QY, Gao BY, Ma ZH, Zhang PD (2012) Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipid. Bioresour Technol 106:69–73

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Liu Y, Wang Y, Liu H, Zhang JA (2015a) Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresour Technol 180:32–39

    CAS  PubMed  Article  Google Scholar 

  40. Liu ZJ, Liu LP, Wen P, Li N, Zong MH, Wu H (2015b) Effects of acetic acid and pH on growth and lipid accumulation of the oleaginous yeast Trichosporon fermentans. BioResources 10:4152–4166

    CAS  Google Scholar 

  41. Liu L, Zong M, Hu Y, Li N, Lou W, Wu H (2017) Efficient microbial oil production on crude glycerol by Lipomyces starkeyi AS 2.1560 and its kinetics. Process Biochem 58:230–238

    CAS  Article  Google Scholar 

  42. Lopes HJS, Bonturi N, Miranda EA (2020) Rhodotorula toruloides Single Cell Oil Production Using Eucalyptus urograndis Hemicellulose Hydrolysate as a Carbon Source. Energies 13:795

    CAS  Article  Google Scholar 

  43. Ma Y, Gao Z, Wang Q, Liu Y (2018) Biodiesels from microbial oils: Opportunity and challenges. Bioresour Technol 263:631–641

    CAS  PubMed  Article  Google Scholar 

  44. Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer and modified Bligh & Dyer extraction methods. J Food Compos Anal 100(14):93

    Article  CAS  Google Scholar 

  45. Masri MA, Garbe D, Mehlmer N, Brück TB (2019) A sustainable, high-performance process for the economic production of waste-free microbial oils that can replace plant-based equivalents. Energy Environ Sci. https://doi.org/10.1039/C9EE00210C

    Article  Google Scholar 

  46. Matsakas L, Sterioti AA, Rova U, Christakopoulos P (2014) Use of dried sweet sorghum for the efficient production of lipids by yeast Lipomyces starkeyi CBS 1807. Ind Crops Prod 62:367–372

    CAS  Article  Google Scholar 

  47. Maza DD, Vinartab SC, Suc Y, Guillamonc JM, Aybara MJ (2020) Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol 310:21–31

    CAS  PubMed  Article  Google Scholar 

  48. Mishra VK, Goswami R (2017) A review of production, properties and advantages of biodiesel. Biofuels. https://doi.org/10.1080/17597269.2017.1336350

    Article  Google Scholar 

  49. Nilsson A, Gorwa-Grauslund MF, Hahn-Hagerdal B, Liden G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71(12):7866–7871

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production Strategies and Applications of Microbial Single Cell Oils. Front Microbiol 7:1539. https://doi.org/10.3389/fmicb.2016.01539

    Article  PubMed  PubMed Central  Google Scholar 

  51. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31

    CAS  PubMed  Article  Google Scholar 

  52. Park GW, Chang HN, Jung K, Seob C, Kim YC, Choi JH, Woo HC, Hwang IJ (2017) Production of microbial lipid by Cryptococcus curvatus on rice strawhydrolysates. Process Biochem 56:147–153

    CAS  Article  Google Scholar 

  53. Pejin B, Iodice C, Tommonaro G, Sabovljevic M, Bianco A, Tesevic V, Vajs V, De Rosa S (2012) Sugar composition of the moss Rhodobryum ontariense (Kindb.) Kindb. Nat Prod Res. https://doi.org/10.1080/14786419.2010.535163

    Article  PubMed  Google Scholar 

  54. Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. Oilseeds & fats Crops and Lipids (OCL). https://doi.org/10.1051/ocl/2013029

    Article  Google Scholar 

  55. Rocha GJM, Martin C, Soares IB, Maior AMS, Baudel HM, Abreu CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioenerg 35(1):663–670

    Article  CAS  Google Scholar 

  56. Santamauro F, Whiffin FM, Scott RJ, Chuck CJ (2014) Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechonol Biofuels 7:34–34

    Article  CAS  Google Scholar 

  57. Silva DDV, Arruda PV, Dussán KJ, Felipe MGA (2014) Adaptation of Scheffersomyces stipitis Cells as a Strategy to the Improvement of Ethanol Production from Sugarcane Bagasse Hemicellulosic Hydrolysate. Chem Eng Trans 38:427–432

    Google Scholar 

  58. Srienc F, Arnold B, Bailey JE (1984) Characterization of intracellular accumulation of poly-beta-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng 26:982

    CAS  PubMed  Article  Google Scholar 

  59. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287

    CAS  PubMed  Article  Google Scholar 

  60. Sutanto S, Zullaikah S, Tran-Nguyen PL, Ismadji S, Jua YH (2018) Lipomyces starkeyi: Its current status as a potential oil producer. Fuel Process Technol 177:39–55

    CAS  Article  Google Scholar 

  61. Takaku H, Matsuzawa T, Yaoi K, Yamazaki H (2020) Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-020-10695-9

    Article  PubMed  Google Scholar 

  62. Tapia EV, Anschau A, Coradini ALV, Franco TT, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2(64):1–8

    Google Scholar 

  63. Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118(4):911–927

    CAS  PubMed  Article  Google Scholar 

  64. Thagaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L (2019) Catalysis in biodiesel production—a review. Clean Energy 3(1):2–23

    Article  Google Scholar 

  65. Thanapimmetha A, Peawsuphon N, Chisti Y, Saisriyoot M, Srinophakun P (2019) Lipid production by the yeast Lipomyces starkeyi grown on sugars and oil palm empty fruit bunch hydrolysate. Biomass Convers Bior. https://doi.org/10.1007/s13399-019-00532-z

    Article  Google Scholar 

  66. Tsegaye B, Balomajumder C, Roy P (2019) Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel production: an overview and future prospect. Bull Natl Res Cent 43:5

    Article  Google Scholar 

  67. Tsoutsos T, Bethanis D (2011) Optimization of the Dilute Acid Hydrolyzator for Cellulose-to-Bioethanol Saccharification. Energies 4(12):1601–1623

    CAS  Article  Google Scholar 

  68. Vieira JPF, Ienczak JL, Rossell CEV, Pradella JGC, Franco TT (2014) Microbial lipid production: screening with yeasts grown on Brazilian molasses. Biotechnol Lett 36(12):2433–2442

    CAS  PubMed  Article  Google Scholar 

  69. Wang R, Wang J, Xu R, Fang Z, Liu A (2014) Oil production by the oleaginous yeast Lipomyces starkeyi using diverse carbon sources. BioResources 9(4):7027–7040

    Google Scholar 

  70. Westman J, Franzén CJ (2015) Current progress in high cell density yeast bioprocesses for bioethanol production. Biotechnol J 10:1185–1195

    CAS  PubMed  Article  Google Scholar 

  71. Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Baipai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48:329–335

    CAS  Google Scholar 

  72. Xavier MCA, Coradini ALV, DeckmannAC FTT (2017) Lipid production from hemicellulose hydrolysate and acetic acid by Lipomyces starkeyi and the ability of yeast to metabolize inhibitors. Biochem Eng J 118:11–19

    CAS  Article  Google Scholar 

  73. Xiong L, Huang C, Yang XY, Lin XQ, Chen XF, Wang C, Wang B, Zeng XA, Chen XD (2015) Beneficial effect of corncob acid hydrolysate on the lipid production by oleaginous yeast Trichosporon dermatis. Prep Biochem Biotechnol 45(5):421–429

    CAS  PubMed  Article  Google Scholar 

  74. Zhao X, Kong X, Hua Y, Feng B, Zhao Z (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412

    CAS  Article  Google Scholar 

  75. Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35(6):993–1004

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. Zhu JJ, Yong Q, Xu Y, Chen SX, Yu SY (2009) Adaptation fermentation of Pichia stipitis and combination detoxification on steam exploded lignocellulosic prehydrolysate. Natural Sci 1(1):47–54

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank FAPESP (Foundation for Research Support of the State of São Paulo), CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development) for their support of this research. We would like to thank LNBR (Brazilian Biorenewables National Laboratory) and Dr. Carlos Vaz Rossel for providing the sugarcane bagasse and the Parr reactor.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michelle da Cunha Abreu Xavier.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Cunha Abreu Xavier, M., Teixeira Franco, T. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi. Biotechnol Lett (2021). https://doi.org/10.1007/s10529-021-03080-7

Download citation

Keywords

  • Microbial oil
  • Hydrolysate
  • Biofuel
  • Lipomyces starkeyi
  • Hemicellulose