Formaldehyde effects on kanamycin resistance gene of inactivated recombinant Escherichia coli vaccines

Abstract

Objectives

Earlier studies have demonstrated the use of inactivated recombinant E. coli (bacterins), to protect against Clostridium spp. in vaccinated animals. These bacterins have a simpler, safer, and faster production process. However, these bacterins carry expression plasmids, containing antibiotic resistance gene, which could be assimilate accidentally by environmental microorganisms. Considering this, we aimed to impair this plasmids using formaldehyde at different concentrations.

Results

This compound inactivated the highest density of cells in 24 h. KanR cassette amplification was found to be impaired with 0.8% for 24 h or 0.4% for 72 h. Upon electroporation, E. coli DH5α ultracompetent cells were unable to acquire the plasmids extracted from the bacterins after inactivation procedure. Formaldehyde-treated bacterins were incubated with other viable strains of E. coli, leading to no detectable gene transfer.

Conclusions

We found that this compound is effective as an inactivation agent. Here we demonstrate the biosafety involving antibiotic resistance gene of recombinant E. coli vaccines allowing to industrial production and animal application.

This is a preview of subscription content, log in to check access.

References

  1. Clark TG, Cassidy-Hanley D (2005) Recombinant subunit vaccines: potential and constraints. Dev in Biol Basel 121:153–163. PMID: 15962478

    CAS  Google Scholar 

  2. Crosby RM, Richardson KK, Craft TR, Benforado KB, Liber HL, Skopek TR (1988) Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli. Environ. Mol. Mutag 12(2):155–166. https://doi.org/10.1002/em.2860120202

    CAS  Article  Google Scholar 

  3. Cunha CEP, Moreira GMSG, Salvarani FM, Neves MS, Lobato FCF, Dellagostin AO, Conceição FR (2014) Vaccination of cattle with a recombinant bivalent toxoid against botulism serotypes C and D. Vaccine 32(2):214–216. https://doi.org/10.1016/j.vaccine.2013.11.025

    Article  PubMed  Google Scholar 

  4. Ferreira MRA, Motta JF, Azevedo ML, dos Santos LM, Júnior CM, Rodrigues RR, Donassolo RA, Reis ASB, Barbosa JD, Salvarani FM, Moreira ÂN, Conceição FR (2019) Inactivated recombinant Escherichia coli as a candidate vaccine against Clostridium perfringens alpha toxin in sheep. Anaerobe 59:163–166. https://doi.org/10.1016/j.anaerobe.2019.07.002

    CAS  Article  PubMed  Google Scholar 

  5. Ferreira MRA, Santos FDS, Cunha CEP, Moreira C Jr, Donassolo RA, Magalhães CG, Reis ASB, Oliveira CMC, Barbosa JD, Leite FPL, Salvarani FM, Conceição FR (2018) Immunogenicity of Clostridium perfringens epsilon toxin recombinant bacterin in rabbit and ruminants. Vaccine 36(50):7589–7592. https://doi.org/10.1016/j.vaccine.2018.10.081

    CAS  Article  PubMed  Google Scholar 

  6. Friedrich DC, Passaglia LMP (2005) Avaliação da possibilidade de ocorrência natural de transformação de Azospirillum brasiliense com DNA de plantas contendo o gene de resistência a canamicina. Braz J Biol Sci 2:151–158

    Google Scholar 

  7. Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64(4):1550–1554

    CAS  Article  Google Scholar 

  8. Green MR, Sambrook J (2012) Molecular Cloning: a Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press

  9. Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde crosslinking: a tool for the chromatin complexes. J Biol Chem 290(44):26404–26411. https://doi.org/10.1074/jbc.R115.651679

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383-399. https://doi.org/10.1007/s10295-011-1082-9 PMID: 22252444

    CAS  Article  PubMed  Google Scholar 

  11. Kawanishi M, Matsuda T, Yagi T (2014) Genotoxicity of formaldehyde: molecular basis of DNA damage and mutation. Front Environ Sci 2:36. https://doi.org/10.3389/fenvs.2014.00036

    Article  Google Scholar 

  12. Keese P (2008) Risks from GMOs due to Horizontal Gene Transfer. Environ Biosafety Res 7(3):123-149. https://doi.org/10.1051/ebr:2008014

    CAS  Article  PubMed  Google Scholar 

  13. Lee KC, Liu CF, Lin TH, Pan TM (2010) Safety and risk assessment of the genetically modified Lactococci on rats intestinal bacterial flora. Int J Food Microbiol 142(1-2):164-169. https://doi.org/10.1016/j.ijfoodmicro.2010.06.018

    CAS  Article  PubMed  Google Scholar 

  14. Lu X, Clements JD, Katz JM (2002) Mutant Escherichia coli heat-labile enterotoxin [LT (R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine 20(7-8):1019-1029. PMID: 11803061

    CAS  Article  Google Scholar 

  15. Mignon C, Sodoyer R, Werle B (2015) Antibiotic-free selection in biotherapeutics: now and forever. Pathogens 4(2):157-181

    CAS  Article  Google Scholar 

  16. Moreira C Jr, da Cunha CEP, Moreira GMSG, Mendonça M, Salvarani FM, Moreira AN, Conceição FR (2016) Protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D. Anaerobe 40:58-62. https://doi.org/10.1016/j.anaerobe.2016.05.012

    CAS  Article  PubMed  Google Scholar 

  17. Moreira C Jr, Ferreira MRA, da Cunha CEP, Donassolo RA, Finger PF, Moreira GMSG, Otaka DY, Sousa LA, Barbosa JD, Moreia AN, Salvarani FM, Conceição FR (2018) Immunogenicity of a bivalent non-purified recombinant vaccine against botulism in cattle. Toxins 10(10):381-390. https://doi.org/10.3390/toxins10100381

    CAS  Article  PubMed Central  Google Scholar 

  18. Moreira GMSG, Cunha CEP, Salvarani FM, Gonçalves LA, Pires PS, Conceição FR, Lobato FCF (2014) Production of recombinant botulism antigens: A review of expression systems. Anaerobe 28:130-136. https://doi.org/10.1016/j.anaerobe.2014.06.003

    CAS  Article  PubMed  Google Scholar 

  19. National Center for Biotechnology Information (2018) PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov/compound/6032. Accessed Nov. 9, 2018

  20. Peubez I, Chaudet N, Mignon C, Hild G, Husson S, Courtois V, Sodoyer R (2010) Antibiotic-free selection in E. coli: new considerations for optimal design and improved production. Microb cell fact 9(1):65. https://doi.org/10.1186/1475-2859-9-65

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and Precautions of Genetically Modified Organisms. ISRN Ecology 36(50):1-13. https://doi.org/10.5402/2011/369573

    Article  Google Scholar 

  22. Qadri F, Ahmed T, Ahmed F, Begum YA, Sack DA, Svennerholm AM, PTE Study Group (2006) Reduced doses of oral killed enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine is safe and immunogenic in Bangladeshi infants 6-17 months of age: Dosing studies in different age groups. Vaccine 24(10):1726-1733. https://doi.org/10.1016/j.vaccine.2005.08.110

    CAS  Article  Google Scholar 

  23. Salvarani FM, Conceição FR, Cunha CEP, Moreira GMSG, Pires PS, Silva ROS, Alves GG, Lobato FCF (2013) Vaccination with recombinant Clostridium perfringens toxoids α and β promotes elevated antepartum and passive humoral immunity in swine. Vaccine 31(38):4152-4155. https://doi.org/10.1016/j.vaccine.2013.06.094

    CAS  Article  PubMed  Google Scholar 

  24. Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, Bellgrau D, Franzusoff A, Duke RC, Wilson CC (2001) Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nat Med 7(5):625-9. https://doi.org/10.1038/87974

    CAS  Article  PubMed  Google Scholar 

  25. Thaysen-Andersen M, Jorgensen SB, Wilhelmsen ES, Petersen JW, Hojrup P (2007) Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin. Vaccine 25(12):2213-2227. https://doi.org/10.1016/j.vaccine.2006.12.033

    CAS  Article  PubMed  Google Scholar 

  26. Trott DL, Hellestad EM, Yang M, Cook M (2008) Additions of killed whole cell bacteria preparations to Freund complete adjuvant alter laying hen antibody response to soluble protein antigen. Poult Sci 87(5):912-917. https://doi.org/10.3382/ps.2007-00481

    CAS  Article  PubMed  Google Scholar 

  27. Velkov VV (2001) Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J Biosci 26(5):667-683. https://doi.org/10.1007/bf02704764

    CAS  Article  PubMed  Google Scholar 

  28. Vincentelli R, Romier C (2013) Expression in Escherichia coli: becoming faster and more complex. Curr Opin Struct Biol 23(3):326-334. https://doi.org/10.1016/j.sbi.2013.01.006

    CAS  Article  PubMed  Google Scholar 

  29. Wenneras C, Svennerholm AM, Ahrein C, Czerkinsky C (1992) Antibody-secreting cells in hum8an peripheral blood after oral immunization with an inactivated enterotoxigenic Escherichia coli vaccine. Infect Immunity 60(7):2605-2611

    CAS  Article  Google Scholar 

  30. Werzberger A, Mensch B, Kuter B, Brown L, Lewis J, Sitrin R, William Miller MS, Shouval D, Wiens B, Gary C, Ryan J, Provost P, Nalin D (1992) A controlled trial of a formalin-inactivated hepatitis a vaccine in healthy children. N Engl J Med 327(7):453-7. https://doi.org/10.1056/NEJM199208133270702

    CAS  Article  PubMed  Google Scholar 

  31. Wichmann F, Wyrschi I, Frank J, Müller M, Bertschi N, Brodmann P, Bagutti (2017) Monitoring of genetically modified Escherichia coli in laboratory wastewater. Environ Sci Pollut Res Int 24(30):23725-23734. https://doi.org/10.1007/s11356-017-0021-3

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the researchers and staff of the Applied Immunology Laboratory (UFPel, Pelotas, RS, Brazil), and to the funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES)–Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS).

Author information

Affiliations

Authors

Contributions

RD, EM, LS and RR performed the experiments. RD, MF, GM, AM and FC supervised the study and reviewed of manuscript. RD,MF, CM-J, GM, AM and FC designed the experiments, analysed and interpreted data, and wrote the manuscript.

Corresponding author

Correspondence to Rafael A. Donassolo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donassolo, R.A., Ferreira, M.R.A., Moreira Jr, C. et al. Formaldehyde effects on kanamycin resistance gene of inactivated recombinant Escherichia coli vaccines. Biotechnol Lett (2020). https://doi.org/10.1007/s10529-020-02929-7

Download citation

Keywords

  • Antibiotic resistance gene
  • Chemical inactivation
  • Recombinant vaccines
  • Selection marker