Skip to main content
Log in

The response of transgenic Brassica species to salt stress: a review

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed I, Yadav D, Shukla P, Vineeth TV, Sharma PC, Kirti PB (2017) Constitutive expression of Brassica juncea annexin, AnnBj2 confers salt tolerance and glucose and ABA insensitivity in mustard transgenic plants. Plant Sci 265:12–28

    Article  PubMed  CAS  Google Scholar 

  • Ali N, Zada A, Ali M, Hussain Z (2016) Isolation and identification of Agrobacterium tumefaciens from the galls of peach tree. J Rural Dev Agric 1(1):39–48

    Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157–174

    Article  CAS  Google Scholar 

  • Bhattacharya RC, Maheswari M, Dineshkumar V, Kirti PB, Bhat SR, Chopra VL (2004) Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci Hortic 100(1):215–227

    Article  CAS  Google Scholar 

  • Chen X et al (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS ONE 12(7):e0181450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139(2):137–145

    Article  PubMed  CAS  Google Scholar 

  • Dreyer LL, Jordaan M (2000) Brassicaceae. In: seed plants of Southern Africa (ed. O.A. Leistner). National Botanical Institute, Pretoria. Strelitzia 10:184–191

    Google Scholar 

  • Fang Y, Xie K, Hou X, Hu H, Xiong L (2010) Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 283:157–169

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467. https://doi.org/10.1038/srep19467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hogarth PJ (2015) The biology of mangroves and seagrasses, 3rd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122(3):747–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jan SA, Shinwari ZK, Rabbani MA (2016) Agro-morphological and physiological responses of Brassica rapa ecotypes to salt stress. Pak J Bot 48(4):1379–1384

    CAS  Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490. https://doi.org/10.1042/BST20130242

    Article  PubMed  CAS  Google Scholar 

  • Kim JA et al (2016) Reduction of GIGANTEA expression in transgenic Brassica rapa enhances salt tolerance. Plant Cell Rep 35(9):1943–1954

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Mao S, Du K, Wu M, Zhou X, Chu C, Wang Y (2011) Comparative proteomics analysis of OsNAS1 transgenic Brassica napus under salt stress. Chin Sci Bull 56(22):2343–2350

    Article  CAS  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38(7):1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Shekhar S, Bisht S, Kumar V, Varma A, Kumar M (2015) Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress. J Bioeng Biomed Sci 5:147. https://doi.org/10.4172/2155-9538.1000147

    Article  CAS  Google Scholar 

  • Luo J, Tang S, Mei F, Peng X, Li J, Li X, Wu G (2017) BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci 8:1–14

    Google Scholar 

  • Machado RUA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Metwali EMR, Fuller MP, Jellings AJ (2012) Agrobacterium mediated transformation of anti-stress genes into cauliflower (Brassica oleracea var. botrytis L.). 2. Transformation and confirmation of stress tolerance. Aust J Basic Appl Sci 6(5):31–39

    CAS  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2016) Genomics approaches for improving salinity stress tolerance in crop plants. Curr Genomics 17(4):343–357. https://doi.org/10.2174/1389202917666160331202517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169(3):553–558

    Article  CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol Breed 6(5):489–499

    Article  CAS  Google Scholar 

  • Qamarunnisa S, Jamil I, Raza S, Azhar A, Naqvi SHM (2015) Genetic improvement of canola against abiotic stress through incorporation of DREB gene. Asian J Agric Biol 3(3):77–104

    Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  • Rajwanshi R, Kumar D, Yusuf MA, DebRoy S, Sarin NB (2016) Stress-inducible overexpression of glyoxalase I is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea. Mol Breed 36(6):1–15

    Article  CAS  Google Scholar 

  • Ruiz J, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214(6):965–969

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Mishra S, Awasthi JP, Sahoo L, Panda SK (2016) Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environ Exp Bot 128:99–111

    Article  CAS  Google Scholar 

  • Sastre-Conde I, Lobo MC, Beltrán-Hernández RI, Poggi-Varaldo HM (2015) Remediation of saline soils by a two-step process: washing and amendment with sludge. Geoderma 247(248):140–150

    Article  CAS  Google Scholar 

  • Saxena M, Roy SD, Singla-Pareek SL, Sopory SK, Bhalla-Sarin N (2011) Overexpression of the glyoxalase II gene leads to enhanced salinity tolerance in Brassica juncea. Open Plant Sci J 5:23–28

    Article  CAS  Google Scholar 

  • Shah SH, Ali S, Jan SA, Ali GM (2015) Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tissue Organ Cult 120(3):1139–1157

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Fristensky B, Kav NNV (2004) Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. Plant Cell Physiol 45:1320–1324

    Article  PubMed  CAS  Google Scholar 

  • Sun XE, Feng XX, Li C, Zhang ZP, Wang LJ (2015) Study on salt tolerance with YHem1 transgenic canola (Brassica napus). Physiol Plant 154(2):223–242

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K (2004) Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plant 48(4):509–515

    Article  CAS  Google Scholar 

  • Wang QB, Xu W, Xue QZ, Su WA (2010) Transgenic Brassica chinensis plants expressing a bacterial codA gene exhibit enhanced tolerance to extreme temperature and high salinity. J Zhejiang Univ Sci B 11(11):851–861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xi J, Qiu Y, Du L, Poovaiah BW (2012) Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci 18:274–280

    Article  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci 98(22):12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64(1):60–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from National Key Research and Development Program of China (2017YFD0101702), and China Agriculture Research System (nycytx00503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, N., Anwar, S., Xu, J. et al. The response of transgenic Brassica species to salt stress: a review. Biotechnol Lett 40, 1159–1165 (2018). https://doi.org/10.1007/s10529-018-2570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2570-z

Keywords

Navigation