Skip to main content
Log in

An efficient biocatalytic synthesis of imidazole-4-acetic acid

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

A Correction to this article was published on 21 June 2018

This article has been updated

Abstract

Objective

To develop a new and efficient biocatalytic synthesis method of imidazole-4-acetic acid (IAA) from l-histidine (l-His).

Results

l-His was converted to imidazole-4-pyruvic acid (IPA) by an Escherichia coli whole-cell biocatalyst expressing membrane-bound l-amino acid deaminase (ml-AAD) from Proteus vulgaris firstly. The obtained IPA was subsequently decarboxylated to IAA under the action of H2O2. Under optimum conditions, 34.97 mM IAA can be produced from 50 mM l-His, with a yield of 69.9%.

Conclusions

Compared to the traditional chemical synthesis, this biocatalytic method for IAA production is not only environmentally friendly, but also more cost effective, thus being promising for industrial IAA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 21 June 2018

    In the original publication of the article, the affiliations of authors Jun Huang, Changjiang Lv and Jiaqi Mei were misplaced. The correct information for author affiliations is provided in this correction.

References

  • Chowdhury G, Dostalek M, Hsu EL, Nguyen LP, Stec DF, Bradfield CA, Guengerich FP (2009) Structural identification of diindole agonists of the aryl hydrocarbon receptor derived from degradation of indole-3-pyruvic acid. Chem Res Toxicol 22:1905–1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper AJ, Ginos JZ, Meister A (1983) Synthesis and properties of the alpha-keto acids. Chem Rev 83:321–358

    Article  CAS  Google Scholar 

  • Ding HR, Zhao WR, Lv CJ, Huang J, Hu S, Yao SJ, Mei LH, Wang JB (2017) Biosynthesis of 4-hydroxyphenylpyruvic acid from l-tyrosine using recombinant Escherichia coli cells expressing membrane bound l-amino acid deaminase. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2017.08.009

    Article  Google Scholar 

  • Drozdzewski P, Pawlak B (2004) Coordination sphere vibrations in copper(II), nickel(II) and cobalt(II) complexes with 4-imidazoleacetic acid; metal isotope, deuteration, and density functional study. Spectrochim Acta A 60:1527–1532

    Article  CAS  Google Scholar 

  • Drozdzewski P, Pawlak B, Glowiak T (2002) Crystal structure and spectroscopic properties of aquabis (imdazole-4-acetato) copper(II). J Coord Chem 55:735–744

    Article  CAS  Google Scholar 

  • Easson A, Pyman FL (1932) A general method for the preparation of 1-substituted glyoxalines from acetalylthiocarbimide and primary amines. J Chem Soc. https://doi.org/10.1039/JR9320001806

    Article  Google Scholar 

  • Ghosn B, Singh A, Li M, Vlassov AV, Burnett C, Puri N, Roy K (2010) Efficient gene silencing in lungs and liver using imidazole-modified chitosan as a nanocarrier for small interfering RNA. Oligonucleotides 20:163–172

    Article  PubMed  CAS  Google Scholar 

  • Hossain GS, Li J, Shin H, Chen RR, Du G, Liu L, Chen J (2014a) Bioconversion of l-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol 169:112–120

    Article  PubMed  CAS  Google Scholar 

  • Hossain GS, Li J, Shin H, Du G, Wang M, Liu L, Chen J (2014b) One-step biosynthesis of alpha-keto-gamma-methylthiobutyric acid from l-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered l-amino acid deaminase from Proteus vulgaris. PLoS ONE 9(12):e11429112

    Article  CAS  Google Scholar 

  • Ju Y, Tong S, Gao Y, Zhao W, Liu Q, Gu Q, Xu J, Niu L, Teng M, Zhou H (2016) Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris. J Struct Biol 195:306–315

    Article  PubMed  CAS  Google Scholar 

  • Kulis-Horn RK, Persicke M, Kalinowski J (2014) Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 7:5–25

    Article  PubMed  CAS  Google Scholar 

  • Kurdziel K, Glowiak T, Materazzi S, Jezierska J (2003) Crystal structure and physico-chemical properties of cobalt(II) and manganese(II) complexes with imidazole-4-acetate anion. Polyhedron 22:3123–3128

    Article  CAS  Google Scholar 

  • Mehler AH, Tabor H, Bauer H (1952) The oxidation of histamine to imidazoleacetic acid in vivo. J Biol Chem 197:475–480

    PubMed  CAS  Google Scholar 

  • Niu P, Dong X, Wang Y, Liu L (2014) Enzymatic production of alpha-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase. J Biotechnol 179:56–62

    Article  PubMed  CAS  Google Scholar 

  • Pyman FL (1911) A new synthesis of 4 (or 5-)-beta-aminoethylglyoxaline, one of the active principles of ergot. J Chem Soc 99:668–682

    Article  CAS  Google Scholar 

  • Schayer RW (1952) The metabolism of ring-labeled histamine. J Biol Chem 196:469–475

    PubMed  CAS  Google Scholar 

  • Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products—the use of proteins and amino acids. Appl Microbiol Biot 75:751–762

    Article  CAS  Google Scholar 

  • Song Y, Li J, Shin H, Du G, Liu L, Chen J (2015) One-step biosynthesis of alpha-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris. Sci Rep 5:12614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi E, Ito K, Yoshimoto T (1999) Cloning of l-amino acid deaminase gene from Proteus vulgaris. Biosci Biotech Bioch 63:2244–2247

    Article  CAS  Google Scholar 

  • Teng Y, Scott EL, van Zeeland ANT, Sanders JPM (2011) The use of l-lysine decarboxylase as a means to separate amino acids by electrodialysis. Green Chem 13:624–630

    Article  CAS  Google Scholar 

  • Tunnicliff G (1998) Pharmacology and function of imidazole 4-acetic acid in brain. Gen Pharmacol 31:503–509

    Article  PubMed  CAS  Google Scholar 

  • Valembois S, Krall J, Frolund B, Steffansen B (2017) Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells. Eur J Pharm Sci 103:77–84

    Article  PubMed  CAS  Google Scholar 

  • Wu XW, Li F, Wen J, Tian XS, Wu GY, Chen WD (2014) HPLC determination of 2-methylimidazole and 4-methylimidazolein imidazole. PTCA 9:1146–1148

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from the National Natural Science Foundation of China (31670804, 31470793, 21376217), China Postdoctoral Science Foundation (2016M592003), Zhejiang Provincial Natural Science Foundation (LY16B060008), and the General Scientific Research Project of Zhejiang Provincial Education Department (Y201432760).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehe Mei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Ding, H., Hu, S. et al. An efficient biocatalytic synthesis of imidazole-4-acetic acid. Biotechnol Lett 40, 1049–1055 (2018). https://doi.org/10.1007/s10529-018-2569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2569-5

Keywords

Navigation