Skip to main content

Advertisement

Log in

Heterologous expression of Talaromyces emersonii cellobiohydrolase Cel7A in Trichoderma reesei increases the efficiency of corncob residues saccharification

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

Improve the hydrolysis efficiency of the Trichoderma reesei cellulase system by heterologously expressing cellobiohydrolase Cel7A (Te-Cel7A) from the thermophilic fungus Talaromyces emersonii.

Results

Te-Cel7A was expressed in T. reesei under control of the cdna1 promoter and the generated transformant QTC14 could successfully secrete Te-Cel7A into the supernatant using glucose as carbon source. The recombinant Te-Cel7A had a temperature optimum at 65 °C and an optimal pH of 5, which were similar to those from the native host. The culture supernatant of QTC14 exhibited a 28.8% enhancement in cellobiohydrolase activity and a 65.2% increase in filter paper activity relative to that of the parental strain QP4. Moreover, the QTC14 cellulase system showed higher thermal stability than that of the parental strain QP4. In the saccharification of delignified corncob residue, the cellulose conversion of QTC14 showed 13.9% higher than that of QP4 at the end of reaction.

Conclusions

The thermophilic fungus-derived cellulases could be efficiently expressed by T. reesei and the recombinant cellulases had potential applications for biomass conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anbar M, Gul O, Lamed R, Sezerman UO, Bayer EA (2012) Improved thermostability of Clostridium thermocellum endoglucanase Cel8A by using consensus-guided mutagenesis. Appl Environ Microbiol 78:3458–3464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5:578–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Qian Y, Wang Y, Qu Y, Zhong Y (2017) Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol Biofuels 10:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  • Hartl L, Seiboth B (2005) Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 48:204–211

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Tamaki H, Yamamoto K, Kumagai H (2003) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol 63:42–50

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP, Kubicek EM (2016) Enzymatic deconstruction of plant biomass by fungal enzymes. Curr Opin Chem 35:51–57

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McHale A, Coughlan MP (1980) Synergistic hydrolysis of cellulose by components of the extracellular cellulase system of Talaromyces emersonii. FEBS Lett 117:319–322

    Article  PubMed  CAS  Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  PubMed  Google Scholar 

  • Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y (2016) Characterization and strain improvement of a hypercellulytic variant, Trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol 7:1349

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Zhong L, Gao J, Sun N, Wang Y, Sun G, Qu Y, Zhong Y (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb Cell Fact 16:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Sipos B, Benko Z, Dienes D, Réczey K, Viikari L, Siika-aho M (2010) Characterisation of specific activities and hydrolytic properties of cell-wall-degrading enzymes produced by Trichoderma reesei Rut C30 on different carbon sources. Appl Biochem Biotechnol 161:347–364

    Article  PubMed  CAS  Google Scholar 

  • Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Coughlan MP (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 1596:366–380

    Article  PubMed  CAS  Google Scholar 

  • Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B (2012) A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol 93:1601–1608

    Article  PubMed  CAS  Google Scholar 

  • Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, Hooman S, Viikari L, Vehmaanperä J, Koivula A (2008) Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol Bioeng 101:515–528

    Article  PubMed  CAS  Google Scholar 

  • Voutilainen SP, Murray PG, Tuohy MG, Koivula A (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23:69–79

    Article  PubMed  CAS  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (No. 31370135) and the Major Research Projects of Shandong Province (2017GSF21111 and 2016GGH3103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaohua Zhong or Meixue Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Qian, Y., Wang, W. et al. Heterologous expression of Talaromyces emersonii cellobiohydrolase Cel7A in Trichoderma reesei increases the efficiency of corncob residues saccharification. Biotechnol Lett 40, 1119–1126 (2018). https://doi.org/10.1007/s10529-018-2564-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2564-x

Keywords

Navigation