Biotechnology Letters

, Volume 40, Issue 6, pp 965–972 | Cite as

A versatile Trichoderma reesei expression system for the production of heterologous proteins

  • Jiajia Zhang
  • Chuan Wu
  • Wei Wang
  • Wei Wang
  • Dongzhi Wei
Original Research Paper



To develop a versatile Trichoderma reesei (teleomorph Hypocrea jecorina) expression system for the high-purity production of heterologous proteins.


The versatile T. reesei expression system is based on xyn1 and xyn2 promoters, A824V transition in XYRI, and a bicomponent carbon source strategy. Red fluorescent protein gene rfp and alkaline endoglucanase EGV gene egv3 from Humicola insolens were used as reporter genes to test our versatile expression system


The versatile T. reesei expression system can be applied to produce heterologous proteins with high purity and high yield.


Heterologous proteins Promoter Trichoderma reesei Versatile expression system xyn1 xyn2 



This research was supported by the National Natural Science Foundation of China [No. C010302-31500066] and the Fundamental Research Funds for the Central Universities [No. 222201714053].

Supporting information

Supplementary Table 1—Primers for pXMG, pX1rfp, pX2rfp, pX1egv3 and pX2egv3 constructed in this study.

Supplementary Figure 1—Schematic for identification of gene size and single-copy DNA integration in the genome of the transformants.

Supplementary Figure 2—SDS-PAGE analysis of extracellular proteins secreted by T. reesei RUT C30 and TXMG in different cultivation strategies.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

10529_2018_2548_MOESM1_ESM.docx (432 kb)
Supplementary material 1 (DOCX 431 kb)


  1. Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15:106CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotech 14:438–443CrossRefPubMedGoogle Scholar
  3. Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR (2013) Mutation of the Xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol Biofuels 6:62CrossRefPubMedPubMedCentralGoogle Scholar
  4. Li J, Wang J, Wang S, Xing M, Yu S, Liu G (2012) Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microb Cell Fact 11:84–94CrossRefPubMedPubMedCentralGoogle Scholar
  5. Li Y, Liu C, Bai F, Zhao X (2016) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510CrossRefPubMedGoogle Scholar
  6. Mandels M, Weber J (1969) The production of cellulases. Adv Chem Ser 95:391–414CrossRefGoogle Scholar
  7. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158:58–68CrossRefPubMedGoogle Scholar
  8. Sethia PP, Rao KK, Noronha SB (2014) A dps promoter based expression system for improved solubility of expressed proteins in Escherichia coli. Biotechnol Bioprocess 19:790–797CrossRefGoogle Scholar
  9. Stricker AR, Trefflinger P, Aro N, Penttilä M, Mach RL (2008) Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol 45:436–445CrossRefPubMedGoogle Scholar
  10. Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J Biotechnol 65:163–171CrossRefPubMedGoogle Scholar
  11. Wang W, Meng F, Liu P, Yang S, Wei D (2014) Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei. J Ind Microbiol Biotechnol 41:1709–1718CrossRefPubMedGoogle Scholar
  12. Woodward J, Carmichael JS, Capps KM, Herrmann PC, Lee NE (1990) The competitive inhibition of Trichoderma reesei C30 cellobiohydrolase I by guanidine hydrochloride. FEBS Lett 270:143CrossRefPubMedGoogle Scholar
  13. Zhang X, Li X, Xia L (2015) Heterologous expression of an alkali and thermotolerant lipase from Talaromyces thermophilus in Trichoderma reesei. Appl Biochem Biotech 176:1722–1735CrossRefGoogle Scholar
  14. Zhang L, Zhang S, Jiang X, Wei W, Wang W, Wei D (2016a) A novel host-vector system for heterologous protein co-expression and purification in the Trichoderma reesei industrial strain RUT-C30. Biotechnol Lett 38:89–96CrossRefPubMedGoogle Scholar
  15. Zhang L, Zhao X, Zhang G, Zhang J, Wang X, Zhang S, Wang W, Wei D (2016b) Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Sci Rep 6:20761CrossRefPubMedPubMedCentralGoogle Scholar
  16. Zhang X, Li Y, Zhao X, Bai F (2017) Constitutive cellulase production from glucose using the recombinant Trichoderma reesei strain overexpressing an artificial transcription activator. Bioresour Technol 223:317–322CrossRefPubMedGoogle Scholar
  17. Zou G, Shi S, Jiang Y, Brink J, Vries R, Chen L, Zhang J, Ma L, Wang C, Zhou Z (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact 11:21CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.New World Institute of Biotechnology, State Key Lab of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.State Key Lab of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations