Biotechnology Letters

, Volume 40, Issue 5, pp 781–788 | Cite as

A novel strategy for production of ethanol and recovery of xylose from simulated corncob hydrolysate

  • Jinfeng Sun
  • Jie Wang
  • Kangming Tian
  • Zixing Dong
  • Xiaoguang Liu
  • Kugenthiren Permaul
  • Suren Singh
  • Bernard A. Prior
  • Zhengxiang Wang
Original Research Paper



To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.


Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E. coli B0013-1030 (pta-ack, ldhA, pflB, xylH) by deletion of frdA, xylA and xylE. It exhibited robust growth on plates containing glucose, arabinose or galactose, but failed to grow on xylose. The ethanol synthesis pathway was then introduced into B0013-2012 to create an ethanologenic strain B0013-2012PA. In shaking flask fermentation, B0013-2012PA fermented glucose to ethanol with the yield of 48.4 g/100 g sugar while xylose remained in the broth. In a 7-l bioreactor, B0013-2012PA fermented glucose, galactose and arabinose in the simulated corncob hydrolysate to 53.4 g/l ethanol with the yield of 48.9 g/100 g sugars and left 69.6 g/l xylose in the broth, representing 98.6% of the total xylose in the simulated corncob hydrolysate.


By using newly constructed strain B0013-2012PA, we successfully developed an efficient bioprocess for ethanol production and xylose recovery from the simulated corncob hydrolysate.


Escherichia coli Ethanol Simulated corncob hydrolysate Xylose recovery 



This research was supported financially by The Raising Program of Innovation Team for Tianjin Universities (TD12-5002).

Supporting information

Supplementary Table 1—Primers used in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10529_2018_2537_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)


  1. Anasontzis GE, Christakopoulos P (2014) Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5:393–395CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andersen RL, Jensen KM, Mikkelsen MJ (2015) Continuous ethanol fermentation of pretreated lignocellulosic biomasses, waste biomasses, molasses and syrup using the anaerobic, thermophilic bacterium Thermoanaerobacter italicus Pentocrobe 411. PLoS ONE 10:e0136060CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Bior 4:77–93CrossRefGoogle Scholar
  4. Bátori V, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2015) Ethanol and protein from ethanol plant by-products using edible fungi Neurospora intermedia and Aspergillus oryzae. Biomed Res Int 2015:176371CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cao JL, Zhou L, Zhang L, Wang ZX, Shi GY (2010) Construction and fermentation of succinate-producing recombinant Escherichia coli. Chin J Appl Environ Biol 16:851–857Google Scholar
  6. Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176CrossRefPubMedGoogle Scholar
  7. Garcia Sanchez R, Karhumaa K, Fonseca C, Sànchez Nogué V, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT (2004) Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol 186:7593–7600CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedPubMedCentralGoogle Scholar
  10. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedPubMedCentralGoogle Scholar
  11. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326CrossRefPubMedGoogle Scholar
  12. Khankal R, Chin JW, Cirino PC (2008) Role of xylose transporters in xylitol production from engineered Escherichia coli. J Biotechnol 134:246–252CrossRefPubMedGoogle Scholar
  13. Kogje A, Ghosalkar A (2016) Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3. Biotech 6:127Google Scholar
  14. Latif F, Rajoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol 77:57–63CrossRefPubMedGoogle Scholar
  15. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815PubMedPubMedCentralGoogle Scholar
  16. Puseenam A, Tanapongpipat S, Roongsawang N (2015) Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol production. Appl Biochem Biotechnol 177:1690–1700CrossRefPubMedGoogle Scholar
  17. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845CrossRefPubMedGoogle Scholar
  18. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  19. Song S, Park C (1997) Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. J Bacteriol 179:7025–7032CrossRefPubMedPubMedCentralGoogle Scholar
  20. Sun JF, Xu M, Zhang F, Wang ZX (2004) Novel recombinant Escherichia coli producing ethanol from glucose and xylose. Acta Microbiol Sin 44:600–604Google Scholar
  21. Sun JF, Tian KM, Shen W, Chen XZ, Wang ZX (2017) Genetic nature of xylose metabolism, differences between Escherichia coli strains. Chin J Food Ferment Ind 43:68–73Google Scholar
  22. Treebupachatsakul T, Shioya K, Nakazawa H, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W, Okada H (2015) Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. J Biosci Bioeng 120:657–665CrossRefPubMedGoogle Scholar
  23. Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55:1514–1528CrossRefPubMedGoogle Scholar
  24. van Maris AJ, Winkler AA, Kuyper M, de Laat WT, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204PubMedGoogle Scholar
  25. Yoon SH, Mukerjea R, Robyt JF (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res 338:1127–1132CrossRefPubMedGoogle Scholar
  26. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243CrossRefPubMedGoogle Scholar
  27. Zhou L, Zuo ZR, Chen XZ, Niu DD, Tian KM, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2011) Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli. Curr Microbiol 62:981–989CrossRefPubMedGoogle Scholar
  28. Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA, Shen W, Shi GY, Singh S, Wang ZX (2012) Genetically switched D-lactate production in Escherichia coli. Metab Eng 14:560–568CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biotechnology, Center for Bioresource and BioenergyJiangnan UniversityWuxiChina
  2. 2.Department of Biological Chemical Engineering, College of Chemical Engineering and Materials ScienceTianjin University of Science and Technology, TEDATianjinChina
  3. 3.School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
  4. 4.Department of Biotechnology and Food TechnologyDurban University of TechnologyDurbanSouth Africa
  5. 5.Department of MicrobiologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations