Advertisement

Biotechnology Letters

, Volume 40, Issue 5, pp 797–807 | Cite as

Yield enhancement strategies of rare pharmaceutical metabolites from endophytes

  • Fangxue Xu
  • Shiyuan Wang
  • Yujuan Li
  • Mengmeng Zheng
  • Xiaozhi Xi
  • Hui Cao
  • Xiaowei Cui
  • Hong Guo
  • Chunchao Han
Review

Abstract

Endophytes are barely untapped as vital sources in the medicine. They are microorganisms which mostly exist in plants. As they are exploited, it is accepted that endophytes can produce active metabolites that possess same function as their hosts such as taxol, podophyllotoxin, hypericin, and azadirachtin. These metabolites have been promising potential usefulness in safety and human health concerns. We are supposed to adopt measures to raise production for the low yield of metabolites. This paper summarizes the latest advances in various bioprocess optimization strategies. These techniques can overcome the limitations associated with rare pharmaceutical metabolite-producing endophytic fungi. These strategies include strain improvement, genome shuffling, medium optimization, fermentation conditions optimization, addition of specific factor, addition of solid sorbent, and co-culturing. It will enable endophytes to produce high and sustainable production of rare pharmaceutical metabolites.

Keywords

Yield improvement Develop strategies Pharmaceutical metabolites Endophytes 

Notes

Acknowledgments

This work was supported by Project of Shandong Province Key Research and Development Program (2017YYSP030). The authors would also like to thank the anonymous reviewers for their helpful comments and suggestions that greatly improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Bajwa PK, Pinel D, Martin VJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186.  https://doi.org/10.1016/j.mimet.2010.03.009 CrossRefPubMedGoogle Scholar
  2. Bhagat J, Kaur A, Kaur R, Yadav AK, Sharma V, Chadha BS (2016) Cholinesterase inhibitor (Altenuene) from an endophytic fungus Alternaria alternata: optimization, purification and characterization. J Appl Microbiol 121:1015–1025.  https://doi.org/10.1111/jam.13192 CrossRefPubMedGoogle Scholar
  3. Bian G, Yuan Y, Tao H, Shi X, Zhong X, Han Y, Fu S, Fang C, Deng Z, Liu T (2017) Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol J 12:1600697.  https://doi.org/10.1002/biot.201600697 CrossRefGoogle Scholar
  4. Bigelis R, He H, Yang H, Chang L-P, Greenstein M (2006) Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J Ind Microbiol Biotechnol 33:815–826.  https://doi.org/10.1007/s10295-006-0126-z CrossRefPubMedGoogle Scholar
  5. Chaichanan J, Wiyakrutta S, Pongtharangkul T, Isarangkul D, Meevootisom V (2014) Optimization of zofimarin production by an endophytic fungus, Xylaria sp. Acra L38. Braz J Microbiol 45:287–293CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroraport 8:97–101CrossRefGoogle Scholar
  7. Cho EJ, Oh JY, Chang HY, Yun JW (2006) Production of exopolysaccharides by submerged mycelial culture of a mushroom Tremella fuciformis. J Biotechnol 127:129–140.  https://doi.org/10.1016/j.jbiotec.2006.06.013 CrossRefPubMedGoogle Scholar
  8. Ebel J, Cosio EG (1994) Elicitors of plant defense responses. Int’l Rev Cytol 148:1–36.  https://doi.org/10.1016/S0074-7696(08)62404-3 CrossRefGoogle Scholar
  9. El-Gendy MM, Al-Zahrani SH, El-Bondkly AM (2017) Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl Biochem Biotechnol.  https://doi.org/10.1007/s12010-017-2429-0 Google Scholar
  10. Findlay JA, Buthelezi S, Li GQ, Seveck M, Miller JD (1997) Insect toxins from an endophytic fungus from wintergreen. J Nat Prod 60:1214–1215.  https://doi.org/10.1021/np970222j CrossRefGoogle Scholar
  11. Franco-Lara E, Link H, Weuster-Botz D (2006) Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm. Process Biochem 41:2200–2206.  https://doi.org/10.1016/j.procbio.2006.06.024 CrossRefGoogle Scholar
  12. Gao Y, Yin H, Sun Y, Zhang Z, Cui Y (2008) Mutagenesis of a berberine-producing endophytic fungus. J. Fungal Res. 4:6Google Scholar
  13. Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, Liu WF, Li YZ (2007) Mutation and a high-throughput screening method for improving the production of epothilones of Sorangium. J Ind Microbiol Biotechnol 34:615–623.  https://doi.org/10.1007/s10295-007-0236-2 CrossRefPubMedGoogle Scholar
  14. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393.  https://doi.org/10.1007/s00253-006-0613-1 CrossRefPubMedGoogle Scholar
  15. Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling. Appl Biochem Biotechnol 159:655–663.  https://doi.org/10.1007/s12010-008-8500-0 CrossRefPubMedGoogle Scholar
  16. Kern KA, Pergo EM, Kagami FL, Arraes LS, Sert MA, Ishii-Iwamoto EL (2009) The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L. Plant Physiol Biochem 47:1095–1101.  https://doi.org/10.1016/j.plaphy.2009.07.002 CrossRefPubMedGoogle Scholar
  17. Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228.  https://doi.org/10.1039/c1np00008j CrossRefPubMedGoogle Scholar
  18. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162.  https://doi.org/10.1021/np070669k CrossRefPubMedGoogle Scholar
  19. Kusari S, Zühlke S, Kosuth J, Cellarova E, Spiteller M (2009) Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J Nat Prod 72:1825–1835.  https://doi.org/10.1021/np9002977 CrossRefPubMedGoogle Scholar
  20. Kusari S, Verma VC, Lamshöft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294.  https://doi.org/10.1007/s11274-011-0876-2 CrossRefPubMedGoogle Scholar
  21. Leslie Gunatilaka AA (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526.  https://doi.org/10.1021/np058128n CrossRefGoogle Scholar
  22. Li YC, Tao WY (2009) Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Appl Microbiol Biotechnol 83:233–239.  https://doi.org/10.1007/s00253-009-1856-4 CrossRefPubMedGoogle Scholar
  23. Li JY, Sidhu RS, Bollon A, Strobel GA (1998) Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora. Mycol Res 102:461–464.  https://doi.org/10.1017/S0953756297005078 CrossRefGoogle Scholar
  24. Lin J, Shi BH, Shi QQ, He YX, Wang MZ (2007) Rapid improvement in lipase production of Penicillium expansum by genome shuffling. Chin J Biotechnol 23:672–676.  https://doi.org/10.1016/S1872-2075(07)60044-2 CrossRefGoogle Scholar
  25. Liu L, Wei YM, Zhou XW, Lin J, Sun XF, Tang KX (2013) Agrobacterium tumefaciens mediated genetic transformation of the Taxol-producing endophytic fungus Ozonium sp EFY21. Genet Mol Res 12:2913–2922.  https://doi.org/10.4238/2013.August.12.7 CrossRefPubMedGoogle Scholar
  26. Luo H, Liu H, Cao Y, Xu D, Mao Z, Mou Y, Meng J, Lai D, Liu Y, Zhou L (2014) Enhanced production of botrallin and TMC-264 with in situ macroporous resin adsorption in mycelial liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12. Molecules 19:14221–14234.  https://doi.org/10.3390/molecules190914221 CrossRefPubMedGoogle Scholar
  27. Ma C, Jiang D, Wei X (2011) Mutation breeding of Emericella foeniculicola TR21 for improved production of tanshinone IIA. Process Biochem 46:2059–2063.  https://doi.org/10.1016/j.procbio.2011.07.012 CrossRefGoogle Scholar
  28. Mahapatra S, Banerjee D (2013) Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 97:627–634.  https://doi.org/10.1016/j.carbpol.2013.05.039 CrossRefPubMedGoogle Scholar
  29. Ola A, Thomy D, Lai D, Brötz Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099.  https://doi.org/10.1021/np400589h CrossRefPubMedGoogle Scholar
  30. Parekh S (2000) Strain improvement. In: J Lederberg (ed): Encyclopedia of microbiology, vol. 4, 2nd ed. Academic Press, San Diego, 428-443Google Scholar
  31. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301.  https://doi.org/10.1007/s002530000403 CrossRefPubMedGoogle Scholar
  32. Parra R, Aldred D, Magan N (2005) Medium optimization for the production of the secondary metabolite squalestatin S1 by a Phoma sp. combining orthogonal design and response surface methodology. Enzym Microb. Technol 37:704–711.  https://doi.org/10.1016/j.enzmictec.2005.04.009 CrossRefGoogle Scholar
  33. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375.  https://doi.org/10.1007/s00253-013-5163-8 CrossRefPubMedGoogle Scholar
  34. Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719.  https://doi.org/10.1021/np0502802 CrossRefPubMedGoogle Scholar
  35. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510.  https://doi.org/10.1016/j.jbiotec.2005.10.015 CrossRefPubMedGoogle Scholar
  36. Rani K, Rana R, Datt S (2012) Review on latest overview of proteases. Int J Curr Life Sci. 2:12–18Google Scholar
  37. Rocha MV, Romanini D, Nerli BB, Tubio G (2012) Pancreatic serine protease extraction by affinity partition using a free triazine dye. Int J Biol Macromol 50:303–309.  https://doi.org/10.1016/j.ijbiomac.2011.12.013 CrossRefPubMedGoogle Scholar
  38. Sivaramakrishnan S, Gangadharan D, Madhavan KN, Pandey A (2006) Solid culturing of Bacillus amyloliquefaciens for alpha amylase production. Food Technol Biotechnol 44:269–274Google Scholar
  39. Soliman SS, Raizada MN (2013) Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host taxus plants. Frontiers Microbiol 4:3.  https://doi.org/10.3389/fmicb.2013.00003 CrossRefGoogle Scholar
  40. Somjaipeng S, Medina A, Magan N (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb Technol 90:69–75.  https://doi.org/10.1016/j.enzmictec.2016.05.002 CrossRefPubMedGoogle Scholar
  41. Sommart U, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Towatana NH, Graidist P, Hajiwangoh Z, Sakayaroj J (2009) A cyclohexenone derivative from Diaporthaceous fungus PSU-H2. Arch Pharm Res 32:1227–1231.  https://doi.org/10.1007/s12272-009-1907-5 CrossRefPubMedGoogle Scholar
  42. Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58:1315–1324.  https://doi.org/10.1021/np50123a002 CrossRefPubMedGoogle Scholar
  43. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502.  https://doi.org/10.1128/MMBR.67.4.491-502.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268.  https://doi.org/10.1021/np030397v CrossRefPubMedGoogle Scholar
  45. Thammajaruk N, Sriubolmas N, Israngkul D, Meevootisom V, Wiyakrutta S (2011) Optimization of culture conditions for mycoepoxydiene production by Phomopsis sp. Hant25. J Ind Microbiol Biotechnol 38:679–685.  https://doi.org/10.1007/s10295-010-0813-7 CrossRefPubMedGoogle Scholar
  46. Thompson CJ, Ward JM, Hopwood DA (1982) Cloning of antibiotic resistance and nutritional genes in streptomycetes. J Bacteriol 151:668–677PubMedPubMedCentralGoogle Scholar
  47. Ueda M, Kubo T, Miyatake K, Nakamura T (2007) Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Appl Microbiol Biotechnol 74:331–338.  https://doi.org/10.1007/s00253-006-0621-1 CrossRefPubMedGoogle Scholar
  48. Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 206:104–111.  https://doi.org/10.1016/j.biortech.2016.01.079 CrossRefPubMedGoogle Scholar
  49. Vinale F, Nicoletti R, Borrelli F, Mangoni A, Parisi OA, Marra R, Lombardi N, Lacatena F, Grauso L, Finizio S (2017) Co-culture of plant beneficial microbes as source of bioactive metabolites. Sci Rep 7:14330.  https://doi.org/10.1038/s41598-017-14569-5 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang Y, Guo B, Miao Z, Tang K (2007) Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI). FEMS Microbiol Lett 273:253–259.  https://doi.org/10.1111/j.1574-6968.2007.00801.x CrossRefPubMedGoogle Scholar
  51. Wang X, Wang C, Sun YT, Sun CZ, Zhang Y, Wang XH, Zhao K (2015) Taxol produced from endophytic fungi induces apoptosis in human breast, cervical and ovarian cancer cells. Asian Pac J Cancer Prev 16:125–131.  https://doi.org/10.7314/APJCP.2015.16.1.125 CrossRefPubMedGoogle Scholar
  52. Wang M, Zhang W, Xu W, Shen Y, Du L (2016) Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Appl Microbiol Biotechnol 100:7491–7498.  https://doi.org/10.1007/s00253-016-7457-0 CrossRefPubMedGoogle Scholar
  53. Wei YM, Zhou XW, Liu L, Lu J, Wang ZN, Yu G (2010) An efficient transformation system of taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 9:1726–1733.  https://doi.org/10.5897/AJB2010.000-3019 CrossRefGoogle Scholar
  54. Wen Y, Wang Y, Liu X, Zhang W, Xiong X, Han Z, Liang X (2017) Camptothecin-based nanodrug delivery systems. Cancer Biol Med 14:363–370CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wetwitaklung P, Thavanapong N, Charoenteeraboon J (2009) Chemical constituents and antimicrobial activity of essential oil and extracts of heartwood of Aquilaria crassna obtained from water distillation and supercritical fluid carbon dioxide extraction. Silpakorn Univ Sci Tech J 3:25–33Google Scholar
  56. Xu B, Wang MR, Xia Y, Yang K, Zhang CY (2006a) Improvement of the output of teicoplanin by genome shuffling. Chin J Antibiot 31:237–242.  https://doi.org/10.1360/yc-006-1627 Google Scholar
  57. Xu F, Tao W, Cheng L, Guo L (2006b) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73.  https://doi.org/10.1016/j.bej.2006.05.024 CrossRefGoogle Scholar
  58. Xu LJ, Liu YS, Zhou LG, Wu JY (2009) Enhanced beauvericin production with in situ adsorption in mycelial liquid culture of Fusarium redolens Dzf2. Process Biochem 44:1063–1067.  https://doi.org/10.1016/j.procbio.2009.05.004 CrossRefGoogle Scholar
  59. Yamin W, Lu L, Xuanwei Z, Juan L, Xiaofen S, Kexuan T (2012) Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11:9094–9101.  https://doi.org/10.5897/AJB10.1896 Google Scholar
  60. Zaferanloo B, Virkar A, Mahon PJ, Palombo EA (2013) Endophytes from an Australian native plant are a promising source of industrially useful enzymes. World J Microbiol Biotechnol 29:335–345.  https://doi.org/10.1007/s11274-012-1187-y CrossRefPubMedGoogle Scholar
  61. Zaferanloo B, Quang TD, Daumoo S, Ghorbani MM, Mahon PJ, Palombo EA (2014) Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World J Microbiol Biotechnol 30:1755–1762.  https://doi.org/10.1007/s11274-014-1598-z CrossRefPubMedGoogle Scholar
  62. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646.  https://doi.org/10.1038/415644a CrossRefPubMedGoogle Scholar
  63. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771.  https://doi.org/10.1039/b609472b CrossRefPubMedGoogle Scholar
  64. Zhang P, Liu TT, Zhou PP, Li ST, Yu LJ (2011) Agrobacterium tumefaciens-mediated transformation of a Taxol-producing endophytic fungus, Cladosporium cladosporioides MD2. Curr Microbiol 62:1315–1320.  https://doi.org/10.1007/s00284-010-9864-2 CrossRefPubMedGoogle Scholar
  65. Zhao K, Ping WX, Zhang LN, Liu J, Lin Y, Jin T, Zhou D (2008) Screening and breeding of high taxol producing fungi by genome shuffling. Sci China Ser C Life Sci 51:222–231.  https://doi.org/10.1007/s11427-008-0037-5 CrossRefGoogle Scholar
  66. Zhao J, Li Y, Shan T, Mou Y, Zhou L (2011) Enhancement of diepoxin ζ production with in situ resin adsorption in mycelial liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 from Dioscorea zingiberensis. World J Microbiol Biotechnol 27:2753–2758.  https://doi.org/10.1007/s11274-011-0750-2 CrossRefGoogle Scholar
  67. Zhao XM, Wang ZQ, Shu SH, Wang WJ, Xu HJ, Ahn YJ, Wang M, Hu X (2013) Ethanol and methanol can improve huperzine a production from endophytic Colletotrichum gloeosporioides ES026. PLoS ONE 8:e61777.  https://doi.org/10.1371/journal.pone.0061777 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhou DP, Ping WX, Sun JQ, Zhou XH, Liu XL, Yang DZ, Zhang JP, Zheng XQ (2001a) Isolation of taxol producing fungi. J Microbiol 21(18–19):32Google Scholar
  69. Zhou DP, Sun JQ, Yu HY, Ping WX, Zheng XQ (2001b) Nodulisporium, a genus new to China. Mycosystema 20:277–278Google Scholar
  70. Zhu SS, Zhang YS, Sheng XH, Xu M, Wu SS, Shen YM, Huang YJ, Wang Y, Shi YQ (2015) Deacetyl-mycoepoxydiene, isolated from plant endophytic fungi Phomopsis sp. demonstrates anti-microtubule activity in MCF-7 cells. Biomed Pharmacother 69:82–89.  https://doi.org/10.1016/j.biopha.2014.11.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Fangxue Xu
    • 1
  • Shiyuan Wang
    • 2
  • Yujuan Li
    • 1
  • Mengmeng Zheng
    • 1
  • Xiaozhi Xi
    • 1
  • Hui Cao
    • 1
  • Xiaowei Cui
    • 1
  • Hong Guo
    • 1
  • Chunchao Han
    • 1
  1. 1.School of PharmacyShandong University of Traditional Chinese MedicineJinanPeople’s Republic of China
  2. 2.School of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanPeople’s Republic of China

Personalised recommendations