Recent advances in enhanced enzyme activity, thermostability and secretion by N-glycosylation regulation in yeast

  • Fei Ge
  • Longbao Zhu
  • Anna Aang
  • Ping Song
  • Wanzhen Li
  • Yugui Tao
  • Guocheng Du
Review

Abstract

Yeast has been increasingly used as a host for the expression of enzymes. Compared to other expression systems, the yeast expression system has many advantages including its suitability for large-scale fermentation and its ability to modify enzymes. When expressed in yeast, many recombinant enzymes are N-glycosylated, and this may play an important role in their activity, thermostability and secretion. Although the mechanism underlying this process is not clear, the regulation of N-glycosylation by introducing or eliminating N-glycosylation at specific sites has developed into an important strategy for improving the production or catalytic properties of recombinant enzymes. In this review, we summarize the recent advances in understanding the effects of N-glycosylation on the expression and characteristics of recombinant enzymes, and discuss novel strategies for regulating N-glycosylation in yeast. We hope that this review will help improve the understanding of the expression and the catalytic properties of N-glycosylated proteins.

Keywords

N-glycosylation Protein expression Catalytic properties Yeast 

Notes

Acknowledgements

This work is financially supported by National natural science foundation of China (31671797); Natural sciences foundation supported by Anhui Province universities (KJ2016A801) and the Anhui polytechnic university youth talent support program (2016BJRC006).

References

  1. Aguila S, Martinez-Martinez I, Dichiara G, Gutierrez-Gallego R, Navarro-Fernandez J, Vicente V, Corral J (2014) Increased N-glycosylation efficiency by generation of an aromatic sequon on N135 of antithrombin. PLoS One 9:e114454CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bañó-Polo M, Baldin F, Tamborero S, Marti-Renom MA, Mingarro I (2011) N-glycosylation efficiency is determined by the distance to the C-terminus and the amino acid preceding an Asn-Ser-Thr sequon. Protein Sci 20:179–186CrossRefPubMedGoogle Scholar
  3. Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Min Jou W, Contreras R (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-d-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178CrossRefPubMedGoogle Scholar
  4. Chen W, Kong L, Connelly S, Dendle JM, Liu Y, Wilson IA, Powers ET, Kelly JW (2016) Stabilizing the CH2 domain of an antibody by engineering in an enhanced aromatic sequon. ACS Chem Biol 11:1852–1861CrossRefPubMedPubMedCentralGoogle Scholar
  5. Culyba EK, Price JL, Hanson SR, Dhar A, Wong CH, Gruebele M, Powers ET, Kelly JW (2011) Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331:571–575CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AW, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie Van Leeuwenhoek 62:79–93CrossRefPubMedGoogle Scholar
  7. Guo C, Liu Y, Yu H, Du K, Gan Y, Huang H (2016) A novel strategy for thermostability improvement of trypsin based on N-glycosylation within the omega-loop region. J Microbiol Biotechnol 26:1163–1172CrossRefPubMedGoogle Scholar
  8. Han M, Wang X, Ding H, Jin M, Yu L, Wang J, Yu X (2014a) The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris. Enzyme Microb Technol 54:32–37CrossRefPubMedGoogle Scholar
  9. Han M, Wang X, Yan G, Wang W, Tao Y, Liu X, Cao H, Yu X (2014b) Modification of recombinant elastase expressed in Pichia pastoris by introduction of N-glycosylation sites. J Biotechnol 171:3–7CrossRefPubMedGoogle Scholar
  10. Han M, Wang W, Jiang G, Wang X, Liu X, Cao H, Tao Y, Yu X (2014c) Enhanced expression of recombinant elastase in Pichia pastoris through addition of N-glycosylation sites to the propeptide. Biotechnol Lett 36:2467–2471CrossRefPubMedGoogle Scholar
  11. Han MH, Wang WX, Wang XF, Liu X, Cao H, Tao Y, Yu XB (2015) Enhanced expression of recombinant elastase in Pichia pastoris through the substitution of Thr for Ser in Asn-Xaa-Ser sequons. Appl Biochem Biotechnol 175:428–435CrossRefPubMedGoogle Scholar
  12. Hanson SR, Culyba EK, Hsu TL, Wong CH, Kelly JW, Powers ET (2009) The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc Natl Acad Sci USA 106:3131–3136CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hauri HP, Appenzeller C, Kuhn F, Nufer O (2000) Lectins and traffic in the secretory pathway. FEBS Lett 476:32–37CrossRefPubMedGoogle Scholar
  14. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369CrossRefPubMedGoogle Scholar
  15. Hoffmann D, Florke H (2014) 1998 A structural role for glycosylation: lessons from the hp model. Fold Des 3:337–343CrossRefGoogle Scholar
  16. Hoshida H, Fujita T, Cha-aim K, Akada R (2013) N-Glycosylation deficiency enhanced heterologous production of a Bacillus licheniformis thermostable alpha-amylase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:5473–5482CrossRefPubMedGoogle Scholar
  17. Hu W, Liu X, Li Y, Liu D, Kuang Z, Qian C, Yao D (2017) Rational design for the stability improvement of Armillariella tabescens beta-mannanase MAN47 based on N-glycosylation modification. Enzyme Microb Technol 97:82–89CrossRefPubMedGoogle Scholar
  18. Hua L, Gao X, Yang X, Wan D, He C, Cao J, Song H (2014) Highly efficient production of peptides: N-glycosidase F for N-glycomics analysis. Protein Expr Purif 97:17–22CrossRefPubMedGoogle Scholar
  19. Ito K, Ishimaru T, Kimura F, Matsudomi N (2007) Importance of N-glycosylation positioning for secretion and folding of ovalbumin. Biochem Biophys Res Commun 361:725–731CrossRefPubMedGoogle Scholar
  20. Jigami Y (2008) Yeast glycobiology and its application. Biosci Biotechnol Biochem 72:637–648CrossRefPubMedGoogle Scholar
  21. Kaji H, Yamauchi Y, Takahashi N, Isobe T (2006) Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 1:3019–3027CrossRefPubMedGoogle Scholar
  22. Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection. EMBO J 22:2309–2317CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kostova Z, Wolf DH (2005) Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J Cell Sci 118:1485–1492CrossRefPubMedGoogle Scholar
  24. Kukuruzinska MA, Bergh ML, Jackson BJ (1987) Protein glycosylation in yeast. Annu Rev Biochem 56:915–944CrossRefPubMedGoogle Scholar
  25. Liu Y (2014) Enhanced activity of Rhizomucor miehei lipase by deglycosylation of its propeptide in Pichia pastoris. Curr Microbiol 68:186–191CrossRefPubMedGoogle Scholar
  26. Liu B, Gong X, Chang S, Yang Y, Song M, Duan D, Wang L, Ma Q, Wu J (2009) Disruption of the OCH1 and MNN1 genes decrease N-glycosylation on glycoprotein expressed in Kluyveromyces lactis. J Biotechnol 143:95–102CrossRefPubMedGoogle Scholar
  27. Messner P (2009) Prokaryotic protein glycosylation is rapidly expanding from “curiosity” to “ubiquity”. ChemBioChem 10:2151–2154CrossRefPubMedPubMedCentralGoogle Scholar
  28. Murray AN, Chen W, Antonopoulos A, Hanson SR, Wiseman RL, Dell A, Haslam SM, Powers DL, Powers ET, Kelly JW (2015) Enhanced aromatic sequons increase oligosaccharyltransferase glycosylation efficiency and glycan homogeneity. Chem Biol 22:1052–1062CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nakajima M, Koga T, Sakai H, Yamanaka H, Fujiwara R, Yokoi T (2010) N-Glycosylation plays a role in protein folding of human UGT1A9. Biochem Pharmacol 79:1165–1172CrossRefPubMedGoogle Scholar
  30. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14:103–114CrossRefPubMedGoogle Scholar
  31. Price JL, Shental-Bechor D, Dhar A, Turner MJ, Powers ET, Gruebele M, Levy Y, Kelly JW (2010) Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics. J Am Chem Soc 132:15359–15367CrossRefPubMedPubMedCentralGoogle Scholar
  32. Price JL, Powers DL, Powers ET, Kelly JW (2011) Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc Natl Acad Sci USA 108:14127–14132CrossRefPubMedPubMedCentralGoogle Scholar
  33. Price JL, Culyba EK, Chen WT, Murray AN, Hanson SR, Wong CH, Powers ET, Kelly JW (2012) N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98:195–211CrossRefPubMedPubMedCentralGoogle Scholar
  34. Qin YQ, Qu YB (2014) Asn124 of Cel5A from Hypocrea jecorina not only provides the N-glycosylation site but is also essential in maintaining enzymatic activity. Bmb Rep. 47:256–261CrossRefPubMedPubMedCentralGoogle Scholar
  35. Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506CrossRefPubMedGoogle Scholar
  36. Sagt CM, Kleizen B, Verwaal R, de Jong MD, Muller WH, Smits A, Visser C, Boonstra J, Verkleij AJ, Verrips CT (2000) Introduction of an N-glycosylation site increases secretion of heterologous proteins in yeasts. Appl Environ Microbiol 66:4940–4944CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schaffer C, Graninger M, Messner P (2001) Prokaryotic glycosylation. Proteomics 1:248–261CrossRefPubMedGoogle Scholar
  38. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278CrossRefPubMedGoogle Scholar
  39. Xiao H, Smeekens JM, Wu R (2016) Quantification of tunicamycin-induced protein expression and N-glycosylation changes in yeast. Analyst 141:3737–3745CrossRefPubMedGoogle Scholar
  40. Yang M, Yu XW, Zheng H, Sha C, Zhao C, Qian M, Xu Y (2015) Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact 14:2–14CrossRefGoogle Scholar
  41. Yao MZ, Wang X, Wang W, Fu YJ, Liang AH (2013) Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett 35:1669–1676CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Fei Ge
    • 1
  • Longbao Zhu
    • 1
  • Anna Aang
    • 1
  • Ping Song
    • 1
  • Wanzhen Li
    • 1
  • Yugui Tao
    • 1
  • Guocheng Du
    • 2
  1. 1.School of Biochemical EngineeringAnhui Polytechnic UniversityWuhuPeople’s Republic of China
  2. 2.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations