Skip to main content
Log in

Solvent stable microbial lipases: current understanding and biotechnological applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objective

This review examines on our current understanding of microbial lipase solvent tolerance, with a specific focus on the molecular strategies employed to improve lipase stability in a non-aqueous environment.

Results

It provides an overview of known solvent tolerant lipases and of approaches to improving solvent stability such as; enhancing stabilising interactions, modification of residue flexibility and surface charge alteration. It shows that judicious selection of lipase source supplemented by appropriate enzyme stabilisation, can lead to a wide application spectrum for lipases.

Conclusion

Organic solvent stable lipases are, and will continue to be, versatile and adaptable biocatalytic workhorses commonly employed for industrial applications in the food, pharmaceutical and green manufacturing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abdulmalek E, Hamidon NF, Abdul Rahman MB (2016) Optimization and characterization of lipase catalysed synthesis of xylose caproate ester in organic solvents. J Mol Catal B Enzym 132:1–4

    Article  CAS  Google Scholar 

  • Abuin E, Lissi E, Jara P (2007) Effect of the organic solvent on the interfacial micropolarity of AOT -water reverse micelles. J Chil Chem Soc 52:1082–1087

    CAS  Google Scholar 

  • Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  CAS  PubMed  Google Scholar 

  • Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101:3628–3634

    Article  CAS  PubMed  Google Scholar 

  • Aris MH, Annuar MSM, Ling TC (2016) Lipase-mediated degradation of poly-??-caprolactone in toluene: behavior and its action mechanism. Polym Degrad Stab 133:182–191

    Article  CAS  Google Scholar 

  • Arnold FH (1990) Engineering enzymes for non-aqueous solvents. Trends Biotechnol 8:244–249

    Article  CAS  PubMed  Google Scholar 

  • Augustyniak W, Brzezinska AA, Pijning T et al (2012) Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention. Protein Sci 21:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayaz B, Ugur A, Boran R (2014) Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatal Agric Biotechnol 4(1):103–108. https://doi.org/10.1016/j.bcab.2014.11.007

    Article  Google Scholar 

  • Badgujar KC, Pai PA, Bhanage BM (2016) Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst Eng 39:211–221

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Chatterjee K, Madras G (2014) Enzymatic degradation of polymers: a brief review. Mater Sci Technol 30:567–573. https://doi.org/10.1179/1743284713Y.0000000503

    Article  CAS  Google Scholar 

  • Barrera-rivera KA, Flores-carreón A (2012) Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica. In: Lipase Chapter 28 synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica Lipase. https://doi.org/10.1007/978-1-61779-600-5

  • Ben Bacha A, Moubayed NMS, Al-Assaf A (2016) An organic solvent-stable lipase from a newly isolated Staphylococcus aureus ALA1 strain with potential for use as an industrial biocatalyst. Biotechnol Appl Biochem 63(3):378–390

    Article  CAS  PubMed  Google Scholar 

  • Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Benson NC, Daggett V (2012) A comparison of multiscale methods for the analysis of molecular dynamics simulations. J Phys Chem B 116:8722–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose A, Keharia H (2013) Production, characterization and applications of organic solvent tolerant lipase by Pseudomonas aeruginosa AAU2. Biocatal Agric Biotechnol 2:255–266. https://doi.org/10.1016/j.bcab.2013.03.009

    Article  Google Scholar 

  • Brady L, Brzozowski AM, Derewenda ZS et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770. https://doi.org/10.1038/343767a0

    Article  CAS  PubMed  Google Scholar 

  • Cao Y et al (2012) Purification and characterization of an organic solvent-stable lipase from Pseudomonas stutzeri LC2-8 and its application for efficient resolution of (R, S)-1-phenylethanol. Biochem Eng J 64:55–60

    Article  CAS  Google Scholar 

  • Chakravorty D, Parameswaran S, Dubey VK, Patra S (2012) Unraveling the rationale behind organic solvent stability of lipases. Appl Biochem Biotechnol 167:439–461

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Hu J, Miller EM et al (2008) Candida antarctica Lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromol 9:463–471

    Article  CAS  Google Scholar 

  • Cobb RE, Chao R, Zhao H (2013) Directed evolution: past, present and future. AIChE J 59:1432–1440. https://doi.org/10.1002/aic.13995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Godoy Daiha K et al (2015) Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS ONE 10(6):e0131624

    Article  Google Scholar 

  • De Souza TC et al (2016) Cashew apple bagasse as a support for the immobilization of lipase B from Candida antarctica: application to the chemoenzymatic production of (R)-Indanol. J Mol Catal B 130:58–69

    Article  Google Scholar 

  • Díaz-García ME, Valencia-González MJ (1995) Enzyme catalysis in organic solvents: a promising field for optical biosensing. Talanta 42:1763–1773

    Article  PubMed  Google Scholar 

  • Dror A, Shemesh E, Dayan N, Fishman A (2014) Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Appl Environ Microbiol 80:1515–1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Dror A, Kanteev M, Kagan I et al (2015) Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus. Appl Microbiol Biotechnol 99:9449–9461

    Article  CAS  PubMed  Google Scholar 

  • Duchiron SW et al (2017) Enzymatic synthesis of poly(ε-caprolactone-co-ε-thiocaprolactone). Eur Polym J 87:147–158

    Article  CAS  Google Scholar 

  • Dutta Banik S, Nordblad M, Woodley JM, Peters GH (2016) A Correlation between the activity of Candida antarctica Lipase B and differences in binding free energies of organic solvent and substrate. ACS Catal 6:6350–6361

    Article  CAS  Google Scholar 

  • Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database understanding and exploiting sequence—structure—function relationships Jurgen. J Mol Catal 10:491–508

    Article  Google Scholar 

  • Grosch JH, Wagner D, Nistelkas V, Spie AC (2017) Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions. Biotechnol Prog 33:96–103

    Article  CAS  PubMed  Google Scholar 

  • Halling PJ (1997) Predicting the behaviour of lipases in low-water media. Biochem Soc Trans 25:170–174

    Article  CAS  PubMed  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Illanes A, Cauerhff A, Wilson L, Castro GR (2012) Recent trends in biocatalysis engineering. Bioresour Technol 115:48–57

    Article  CAS  PubMed  Google Scholar 

  • Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  • Jain D, Mishra S (2015) Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J Mol Catal B 117:21–30

    Article  CAS  Google Scholar 

  • Jia C et al (2010) A simple approach for the selective enzymatic synthesis of dilauroyl maltose in organic media. J Mol Catal B 62(3–4):265–269

    Article  CAS  Google Scholar 

  • Jiang X et al (2013a) Synthesis of vitamin E succinate from Candida rugosa lipase in organic medium. Chem Res Chin Univ 29(2):223–226

    Article  CAS  Google Scholar 

  • Jiang Z et al (2013b) Synthesis of phytosterol esters catalyzed by immobilized lipase in organic media. Chin J Catal 34(12):2255–2262

    Article  CAS  Google Scholar 

  • Kamarudin NHA et al (2014) A new cold-adapted, organic solvent stable lipase from mesophilic Staphylococcus epidermidis AT2. Protein J 33(3):296–307

    Article  CAS  PubMed  Google Scholar 

  • Kanmani P et al (2016) Enzymatic degradation of polyhydroxyalkanoate using lipase from Bacillus subtilis. Int J Environ Sci Technol 13(6):1541–1552

    Article  CAS  Google Scholar 

  • Kawata T, Ogino H (2009) Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol Prog 25:1605–1611

    CAS  PubMed  Google Scholar 

  • Kawata T, Ogino H (2010) Amino acid residues involved in organic solvent-stability of the LST-03 lipase. Biochem Biophys Res Commun 400(3):384–388

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskas RJ (1994) Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Trends Biotechnol 12:464–472

    Article  CAS  PubMed  Google Scholar 

  • Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol 5:1–13. https://doi.org/10.3389/fbioe.2017.00016

    Article  Google Scholar 

  • Kirdi R et al (2017) Mycelium-bound lipase from Aspergillus oryzae as efficient biocatalyst for cis-3-hexen-1-yl acetate synthesis in organic solvent. Biocatal Agric Biotechnol 10:13–19

    Article  Google Scholar 

  • Kobayashi S, Uyama H, Takamoto T (2000) Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst. Biomacaromolecules 1(1):3–5

    Article  CAS  Google Scholar 

  • Korman TP, Sahachartsiri B, Charbonneau DM et al (2013) Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol Biofuels 6:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulschewski T, Sasso F, Secundo F et al (2013) Molecular mechanism of deactivation of C. antarctica lipase B by methanol. J Biotechnol 168:462–469. https://doi.org/10.1016/j.jbiotec.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Parshad R, Gupta VK (2014a) Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43. Int J Biol Macromol 66:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kumar V et al (2014b) Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Eng Des Sel 27(3):73–82

    Article  PubMed  Google Scholar 

  • Kumar A et al (2015) Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: Characterization and application in organic medium. Colloids Surf B 136:1042–1050. https://doi.org/10.1016/j.colsurfb.2015.11.006

    Article  CAS  Google Scholar 

  • Kumar A et al (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 18:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiologica 59(6):455–463

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2014) Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles 18(1):171–178

    Article  PubMed  Google Scholar 

  • Maiangwa J, Mohamad Ali MS, Salleh AB et al (2017) Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents. PeerJ 5:e3341. https://doi.org/10.7717/peerj.3341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mander P, Cho SS, Simkhada JR et al (2012) An organic solvent—tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochem 47:635–642. https://doi.org/10.1016/j.procbio.2012.01.003

    Article  CAS  Google Scholar 

  • Masomian M et al (2013) A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 48(1):169–175. https://doi.org/10.1016/j.procbio.2012.11.002

    Article  CAS  Google Scholar 

  • Matte CR, Bordinhaõ C, Poppe JK et al (2016) Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J Mol Catal B 127:67–75. https://doi.org/10.1016/j.molcatb.2016.02.016

    Article  CAS  Google Scholar 

  • McAuley M, Timson DJ (2016) Modulating mobility: a paradigm for protein engineering? Appl Biochem Biotechnol 181:1–8

    Google Scholar 

  • Miyazawa T, Hamada M, Morimoto R, Maeda Y (2014) Candida antarctica lipase B-mediated regioselective acylation of dihydroxybenzenes in organic solvents. Tetrahedron 71:3915–3923. https://doi.org/10.1016/j.tet.2015.04.033

    Article  CAS  Google Scholar 

  • Mo Q et al (2016) A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization. Extremophiles 20(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Molina-Gutiérrez M et al (2016) Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae. Food Chem. https://doi.org/10.1016/j.foodchem.2016.11.005

    Article  PubMed  Google Scholar 

  • Monsef Shokri M, Ahmadian S, Akbari N, Khajeh K (2014) Hydrophobic substitution of surface residues affects lipase stability in organic solvents. Mol Biotechnol 56:360–368

    Article  CAS  PubMed  Google Scholar 

  • Nakano H, Ide Y, Tsuda T et al (1998) Improvement in the organic solvent stability of pseudomonas lipase by random mutation. Annals of the New York Academy of Sciences. Blackwell Publishing Ltd, Oxford, pp 431–434

    Google Scholar 

  • Narwal SK et al (2016) Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ J Bioorg Chem 42(1):69–73. https://doi.org/10.1134/S1068162016010118

    Article  CAS  Google Scholar 

  • Ogino H, Ishikawa H (2001) Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng 91:109–116

    Article  CAS  PubMed  Google Scholar 

  • Öztürk Düşkünkorur H et al (2014) Lipase catalyzed synthesis of polycaprolactone and clay-based nanohybrids. Polymer (United Kingdom) 55(7):1648–1655

    Google Scholar 

  • Park HJ, Joo JC, Park K, Yoo YJ (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol Bioprocess Eng 17:722–728

    Article  CAS  Google Scholar 

  • Park HJ, Joo JC, Park K et al (2013a) Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent. J Biotechnol 163:346–352

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Park K, Yoo YJ (2013b) Understanding the effect of tert-butanol on Candida antarctica lipase B using molecular dynamics simulations. Mol Simul 39:653–659

    Article  CAS  Google Scholar 

  • Patel V et al (2015) Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: process parameters and reusability studies. Biochem Eng J 95:62–70. https://doi.org/10.1016/j.bej.2014.12.007

    Article  CAS  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel A (2006) Iterative saturation mutagenesis on the basis of b factors as a strategy for increasing protein thermostability. Angew Chemie - Int Ed 45:7745–7751

    Article  CAS  Google Scholar 

  • Reetz MT, Soni P, Fernández L et al (2010) Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method. Chem Commun (Camb) 46:8657–8658

    Article  CAS  Google Scholar 

  • Ringborg RH, Woodley JM (2016) The application of reaction engineering to biocatalysis. React Chem Eng 1:10–22

    Article  CAS  Google Scholar 

  • Romero CM et al (2014) Activity and stability of lipase preparations from Penicillium corylophilum: Potential use in biocatalysis. Chem Eng Technol 37(11):1987–1992

    Article  CAS  Google Scholar 

  • Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96

    Article  CAS  Google Scholar 

  • Sandoval GC, Marty A, Condoret J-S (2001) Thermodynamic activity-based enzyme kinetics: efficient tool for nonaqueous enzymology. AIChE J 47:718–726

    Article  CAS  Google Scholar 

  • Schulze B, Klibanov AM (1991) Inactivation and stabilization of stabilisins in neat organic solvents. Biotechnol Bioeng 38:1001–1006

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kanwar SS (2014) Organic solvent tolerant lipases and applications. Sci World J 2014:625258

    Google Scholar 

  • Sivaramakrishnan R, Incharoensakdi A (2016) Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil. J Biosci Bioeng 121(5):517–522

    Article  CAS  PubMed  Google Scholar 

  • Su H, Mai Z, Zhang S (2016) Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301. J Ocean Univ China 15(6):1051–1058. https://doi.org/10.1007/s11802-016-3071-0

    Article  CAS  Google Scholar 

  • Tamilarasan K, Kumar MD (2012) Biocatalysis and agricultural biotechnology purification and characterization of solvent tolerant lipase from Bacillus sphaericus MTCC 7542. Biocatal Agric Biotechnol 1:309–313. https://doi.org/10.1016/j.bcab.2012.07.001

    Article  Google Scholar 

  • Tao J, Kazlauskas RJ, Romas J (2011) Biocatalysis for green chemistry and chemical process development. Wiley, New York

    Book  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97

    Article  CAS  PubMed  Google Scholar 

  • Tufvesson P, Lima-Ramos J, Al Haque N et al (2013) Advances in the process development of biocatalytic processes. Org Process Res Dev 17:1233–1238

    Article  CAS  Google Scholar 

  • Vescovi V et al (2017) Immobilized lipases on functionalized silica particles as potential biocatalysts for the synthesis of fructose oleate in an organic solvent/water system. Molecules 22(2):212

    Article  PubMed Central  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B 9:113–148. https://doi.org/10.1016/S1381-1177(99)00107-1

    Article  CAS  Google Scholar 

  • Vrutika P, Datta M (2015) Lipase from solvent-tolerant Pseudomonas sp. DMVR46 strain adsorb on multiwalled carbon nanotubes: application for enzymatic biotransformation in organic solvents. Appl Biochem Biotechnol 177(6):1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Vrutika P, Shruti N, Datta M (2014) An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: partial purification, characterization and application in non-aqueous environment. Process Biochem 49(10):1673–1681

    Article  Google Scholar 

  • Wang R et al (2015) Enzymatic synthesis of lutein dipalmitate in organic solvents. Catal Lett 145(4):995–999

    Article  CAS  Google Scholar 

  • Wang S, Meng X, Zhou H et al (2016) Enzyme stability and activity in non-aqueous reaction systems: a mini review. Catalysts 6:32

    Article  Google Scholar 

  • Wen S, Tan T, Zhao H (2013) Improving the thermostability of lipase Lip2 from Yarrowia lipolytica. J Biotechnol 164:248–253

    Article  Google Scholar 

  • Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13:3007

    Article  CAS  Google Scholar 

  • Wongwatanapaiboon J et al (2016) Cloning, expression, and characterization of Aureobasidium melanogenum lipase in Pichia pastoris. Biosci Biotechnol Biochem 80(11):2231–2240. https://doi.org/10.1080/09168451.2016.1206809

    Article  CAS  PubMed  Google Scholar 

  • Xie C et al (2016) A lipase with broad solvent stability from Burkholderia cepacia RQ3: isolation, characteristics and application for chiral resolution of 1-phenylethanol. Bioprocess Biosyst Eng 39(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Xun E, Wang J, Zhang H et al (2013) Resolution of N-hydroxymethyl vince lactam catalyzed by lipase in organic solvent. J Chem Technol Biotechnol 88:904–909. https://doi.org/10.1002/jctb.3919

    Article  CAS  Google Scholar 

  • Yagonia CFJ, Park HJ, Hong SY, Yoo YJ (2015) Simultaneous improvements in the activity and stability of Candida antarctica lipase B through multiple-site mutagenesis. Biotechnol Bioprocess Eng 20:218–224. https://doi.org/10.1007/s12257-014-0706-0

    Article  CAS  Google Scholar 

  • Yang S, Zhou L, Tang H et al (2002) Rational design of a more stable penicillin G acylase against organic cosolvent. J Mol Catal B 18:285–290

    Article  CAS  Google Scholar 

  • Yang C, Wang F, Lan D et al (2012) Effects of organic solvents on activity and conformation of recombinant Candida antarctica lipase A produced by Pichia pastoris. Process Biochem 47(3):533–537

    Article  CAS  Google Scholar 

  • Yao C, Cao Y, Wu S et al (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid. J Mol Catal B 85:105–110. https://doi.org/10.1016/j.molcatb.2012.08.016

    Article  CAS  Google Scholar 

  • Yedavalli P, Madhusudhana Rao N (2013) Engineering the loops in a lipase for stability in DMSO. Protein Eng Des Sel 26:317–324. https://doi.org/10.1093/protein/gzt002

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Bailey TL, Teasdale RD (2005) Prediction of protein B-factor profiles. Proteins Struct Funct Bioinforma 58:905–912. https://doi.org/10.1002/prot.20375

    Article  CAS  Google Scholar 

  • Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100 degrees C. Science 224:1249–1251. https://doi.org/10.1126/science.6729453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dublin Institute of Technology under the Fiosraigh Scholarship (PP and YT).

Funding

This work was supported by the Dublin Institute of Technology under the Fiosraigh Scholarship (PP and YT).

Author information

Authors and Affiliations

Authors

Contributions

Conceived study (PP, YT, GKK, GTH, BJR), Performed research (PP, YT), Analyzed data (PP, YT), Contributed methods (GKK, GTH, BJR), Wrote the paper (PP, YT, GKK, GTH, BJR).

Corresponding author

Correspondence to Barry J. Ryan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, P., Tan, Y., Kinsella, G.K. et al. Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol Lett 41, 203–220 (2019). https://doi.org/10.1007/s10529-018-02633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-02633-7

Keywords

Navigation