Biotechnology Letters

, Volume 40, Issue 2, pp 271–278 | Cite as

Overexpression of Sirtuin2 prevents high glucose-induced vascular endothelial cell injury by regulating the p53 and NF-κB signaling pathways

  • Wenguang Zhang
  • Dongmei Liu
  • Jianzhuang Ren
  • Pengli Zhou
  • Xinwei Han
Original Research Paper
  • 112 Downloads

Abstract

Objectives

To investigate the potential role and underlying mechanism of Sirtuin2 (SIRT2) in regulating high glucose (HG)-induced vascular endothelial cell injury by using human umbilical vein endothelial cells (HUVECs).

Results

SIRT2 mRNA and protein expression levels were decreased in HG-treated HUVECs. SIRT2 overexpression increased viability, decreased apoptosis and reduced levels of reactive oxygen species in HG-treated HUVECs. SIRT2 overexpression decreased TNF-α expression (146.5 ± 22.8 pg TNF-α ml−1) relative to that in the empty vector group (263.5 ± 18.5 pg TNF-α ml−1) and decreased MCP-1 expression (63.8 ± 9.85 pg MCP-1 ml−1) relative to that in the empty vector group (105.8 ± 8.5 pg MCP-1 ml−1). SIRT2 overexpression decreased the acetylation of p53 by 33% and decreased the acetylation of NF-κB p65 by 58% in HG-treated HUVECs.

Conclusion

SIRT2 prevents HG-induced vascular endothelial cell injury through suppressing the p53 and NF-κB signaling pathways.

Keywords

High-glucose Hyperglycemia p53 Sirtuin2 SIRT2 Vascular endothelial cells 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beirowski B, Gustin J, Armour SM, Yamamoto H et al (2011) Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par-3/atypical protein kinase C (aPKC) signaling. Proc Natl Acad Sci USA 108:26CrossRefGoogle Scholar
  2. Bhattacharya S, Chaum E, Johnson DA, Johnson LR (2012) Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci 53:8350–8366CrossRefPubMedPubMedCentralGoogle Scholar
  3. Busik JV, Mohr S, Grant MB (2008) Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes 57:1952–1965CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293:1653–1657CrossRefGoogle Scholar
  5. Hoffmann G, Breitenbucher F, Schuler M, Ehrenhofer-Murray AE (2014) A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem 289:5208–5216CrossRefPubMedGoogle Scholar
  6. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kim MJ, Kim DW, Park JH, Kim SJ et al (2013) PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic Biol Med 63:432–445CrossRefPubMedGoogle Scholar
  8. Lin J, Sun B, Jiang C, Hong H, Zheng Y (2013) Sirt2 suppresses inflammatory responses in collagen-induced arthritis. Biochem Biophys Res Commun 441:897–903CrossRefPubMedGoogle Scholar
  9. Liu J, Wu X, Wang X, Zhang Y, Bu P, Zhang Q, Jiang F (2013) Global gene expression profiling reveals functional importance of Sirt2 in endothelial cells under oxidative stress. Int J Mol Sci 14:5633–5649CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lo Sasso G, Menzies KJ, Mottis A, Piersigilli A, Perino A, Yamamoto H, Schoonjans K, Auwerx J (2014) SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE 9:e103573CrossRefPubMedPubMedCentralGoogle Scholar
  11. Pais TF, Szego EM, Marques O, Miller-Fleming L, Antas P, Guerreiro P, de Oliveira RM, Kasapoglu B, Outeiro TF (2013) The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32:2603–2616CrossRefPubMedPubMedCentralGoogle Scholar
  12. Patel VP, Chu CT (2014) Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson’s disease. Exp Neurol 257:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  13. Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO (2010) SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 123:4251–4258CrossRefPubMedGoogle Scholar
  14. Wang YP, Zhou LS, Zhao YZ, Wang SW et al (2014) Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J 33:1304–1320PubMedPubMedCentralGoogle Scholar
  15. Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. J Neurochem 136:581–593CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Radiation OncologyHenan Province Cancer HospitalZhengzhouChina

Personalised recommendations