Biotechnology Letters

, Volume 40, Issue 2, pp 405–411 | Cite as

Immobilization in polyvinyl alcohol hydrogel enhances yeast storage stability and reusability of recombinant laccase-producing S. cerevisiae

  • Klára Herkommerová
  • Jana Zemančíková
  • Hana Sychrová
  • Zuzana Antošová
Original Research Paper
  • 94 Downloads

Abstract

Objectives

To improve the storage stability and reusability of various yeast strains and species by immobilization in polyvinyl alcohol (PVA) hydrogel particles.

Results

Debaryomyces hansenii, Pichia sorbitophila, Saccharomyces cerevisiae, Yarrowia lipolytica, and Zygosaccharomyces rouxii were immobilized in PVA particles using LentiKats technology and stored in sterile water at 4 °C. The immobilization improved the survival of all species; however, the highest storage stability was achieved for S. cerevisiae and Y. lipolytica which survived more than 1 year, in contrast to free cells that survived for only 3 months. Tests of the reusability of immobilized recombinant laccase-secreting S. cerevisiae revealed that the cells were suitable for repetitive use (55 cycles during 15 months) even after storage in water at 4 °C for 9 months. A suitable method for killing immobilized laccase-secreting cells without affecting the produced enzyme activity was also developed.

Conclusions

The immobilization of yeasts in PVA hydrogel enables long-term, cheap storage with very good cell viability and productivity, thus becoming a promising approach for industrial applications.

Keywords

Immobilization Laccase LentiKats Polyvinyl alcohol hydrogel Reusability Storage stability Yeasts 

Notes

Acknowledgements

We thank Dr. Radek Stloukal from LentiKat´s a.s., Stráž pod Ralskem, Czech Republic for sharing the know-how on LentiKats technology and necessary material for the immobilization. S. cerevisiae T73 was a kind gift from Prof. Amparo Querol, IATA-CSIC (Valencia, Spain) and S. cerevisiae FW was obtained from Dr. M. Opekarová, Institute of Microbiology, Czech Academy of Sciences. This work was supported by grant TA01011461 from the Technological Agency of the Czech Republic.

References

  1. Antosova Z, Herkommerova K, Pichova I, Sychrova H (2017) Efficient secretion of three fungal laccases from Saccharomyces cerevisiae and their potential for decolorization of textile industry effluent—a comparative study. Biotechnol Prog.  https://doi.org/10.1002/btpr.2559 PubMedGoogle Scholar
  2. Bleve G, Lezzi C, Mita G, Rampino P, Perrotta C, Villanova L, Grieco F (2008) Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 79:731–741CrossRefPubMedGoogle Scholar
  3. Borovikova D, Rozenfelde L, Pavlovska I, Rapoport A (2014) Immobilisation increases yeast cells’ resistance to dehydration-rehydration treatment. J Biotechnol 184:169–171CrossRefPubMedGoogle Scholar
  4. Desimone M, Degrossi J, D’Aquino M, Diaz L (2002) Ethanol tolerance in free and sol-gel immobilised Saccharomyces cerevisiae. Biotechnol Lett 24:1557–1559CrossRefGoogle Scholar
  5. Ding WA, Vorlop KD (1995) Gel aus polyvinylalkohol und verfahren zu seiner herstellung. German patent: DE 4327923Google Scholar
  6. Ding JM, Huang XW, Zhang LM, Zhao N, Yang DM, Zhang KQ (2009) Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 85:253–263CrossRefPubMedGoogle Scholar
  7. Es I, Vieira JD, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082CrossRefPubMedGoogle Scholar
  8. Gotovtsev PM, Yuzbasheva EY, Gorin KV, Butylin VV, Badranova GU, Perkovskaya NI, Mostova EB, Namsaraev ZB, Rudneva NI, Komova AV et al (2015) Immobilization of microbial cells for biotechnological production: modern solutions and promising technologies. Appl Biochem Microbiol 51:792–803CrossRefGoogle Scholar
  9. Junter GA, Jouenne T (2004) Immobilized viable microbial cells: from the process to the proteome… leader or the cart before the horse. Biotechnol Adv 22:633–658CrossRefPubMedGoogle Scholar
  10. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321–1354CrossRefGoogle Scholar
  11. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiol 21:377–397CrossRefGoogle Scholar
  12. Krasnan V, Stloukal R, Rosenberg M, Rebros M (2016) Immobilization of cells and enzymes to LentiKats. Appl Microbiol Biotechnol 100:2535–2553CrossRefPubMedGoogle Scholar
  13. Kuncova G, Trogl J (2010) Physiology of microorganisms immobilized into inorganic polymers. In: Morrison DA (ed) Handbook of inorganic chemistry research. Nova Science Publishers Inc, New York, pp 53–101Google Scholar
  14. Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne WH et al (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36CrossRefPubMedPubMedCentralGoogle Scholar
  15. Parascandola P, Branduardi P, de Alteriis E (2006) PVA-gel (Lentikats) as an effective matrix for yeast strain immobilization aimed at heterologous protein production. Enzyme Microb Technol 38:184–189CrossRefGoogle Scholar
  16. Stloukal R, Watzkova J, Gregusova B (2014) Dye decolorisation by laccase immobilised in lens-shaped poly(vinyl alcohol) hydrogel capsules. Chem Pap 68:1514–1520CrossRefGoogle Scholar
  17. Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525CrossRefPubMedGoogle Scholar
  18. Zajkoska P, Rosenberg M, Heath R, Malone KJ, Stloukal R, Turner NJ, Rebros M (2015) Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Appl Microbiol Biotechnol 99:1229–1236CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Membrane TransportInstitute of Physiology of the Czech Academy of SciencesPrague 4Czech Republic

Personalised recommendations