Biotechnology Letters

, Volume 40, Issue 2, pp 399–404 | Cite as

Heterologous biosynthesis of triterpenoid ambrein in engineered Escherichia coli

  • Di Ke
  • Qinggele Caiyin
  • Fanglong Zhao
  • Ting Liu
  • Wenyu Lu
Original Research Paper
  • 115 Downloads

Abstract

Objectives

To genetically engineer Escherichia coli for the heterologous biosynthesis of triterpenoid, ambrein, the main bioactive component of ambergris, by constituting a novel squalene-derived ambrein biosynthetic pathway in E. coli.

Results

The ScERG9 gene encoding the squalene synthase (SS) was integrated into the E. coli genome to generate a squalene-producing strain that supplied the central precursor squalene for the formation of cyclic triterpenoids. The mutated squalene–hopene synthase (D377C SHC) and the tetraprenyl-β-curcumene cyclase (BmeTC) were co-expressed with SS to construct a novel ambrein biosynthetic pathway in E. coli. Ambrein was produced at 2.6 mg l−1.

Conclusions

An E. coli chassis for ambrein production was constructed by combining the squalene synthesis module with the downstream cyclization module.

Keywords

Ambergris Ambrein Escherichia coli Heterologous biosynthesis Squalene Triterpenoid 

Notes

Acknowledgements

The present work was funded by the National Basic Research Program of China (“973” Program: 2012CB721105) and the Major Research Plan of Tianjin (16YFXTSF00460).

Supporting information

Supplementary method—effective prediction of relative response factor RRF for epifriedelanol/ambrein in GC-FID analysis via a carbon number-based approach.

Supplementary Table 1—strains and plasmids used.

Supplementary Table 2—DNA sequences of exogenous genes used for the construction of the ambrein biosynthetic pathway in Escherichia coli.

Supplementary Table 3—oligonucleotide primers used in this study.

Supplementary Fig. 1—identification of the authentic ambergris containing ambrein via GC–MS.

Supplementary Fig. 2—quantitative analysis of ambrein production via GC-FID.

Supplementary material

10529_2017_2483_MOESM1_ESM.doc (740 kb)
Supplementary material 1 (DOC 740 kb)

References

  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefPubMedPubMedCentralGoogle Scholar
  2. Jing Z, Li Q, Tao S, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50CrossRefGoogle Scholar
  3. Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D (2015) Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J Biosci Bioeng 119:165–171CrossRefPubMedGoogle Scholar
  4. Kovatcheva A, Golbraikh A, Oloff S, Xiao YD, Zheng W, Wolschann P, Buchbauer G, Tropsha A (2004) Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci 44:582–595CrossRefPubMedGoogle Scholar
  5. Li Y, Lin Z, Huang C, Zhang Y, Wang Z, Tang Y, Chen T, Zhao X (2015) Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng 31:13–21CrossRefPubMedGoogle Scholar
  6. Li D, Zhang Q, Zhou Z, Zhao F, Lu W (2016) Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Biotechnol Lett 38:603–609CrossRefPubMedGoogle Scholar
  7. Ohloff G, Schulte-Elte KH, Müller BL (1977) Formation of ambergris odorants from ambrein under simulated natural conditions. Helv Chim Acta 60:2763–2766CrossRefGoogle Scholar
  8. Sato T, Hoshino T (1999) Functional analysis of the DXDDTA motif in squalene–hopene cyclase by site-directed mutagenesis experiments: initiation site of the polycyclization reaction and stabilization site of the carbocation intermediate of the initially cyclized A-ring. Biosci Biotechnol Biochem 63:2189–2198CrossRefPubMedGoogle Scholar
  9. Sato T, Hoshino H, Yoshida S, Nakajima M, Hoshino T (2011) Bifunctional triterpene/sesquarterpene cyclase: tetraprenyl-β-curcumene cyclase is also squalene cyclase in Bacillus megaterium. J Am Chem Soc 133:17540–17543CrossRefPubMedGoogle Scholar
  10. Shen YC, Cheng SY, Kuo YH, Hwang TL, Chiang MY, Khalil AT (2007) Chemical transformation and biological activities of ambrein, a major product of ambergris from Physeter macrocephalus (sperm whale). J Nat Prod 70:147–153CrossRefPubMedGoogle Scholar
  11. Taha SA (1989) Chemical investigation of the internal secretion of the sperm blue whale. Pak J Pharm Sci 2:105–110PubMedGoogle Scholar
  12. Taha SA (1992) Studies on the mode of action of ambrein as a new antinociceptive compound. Jpn J Pharmacol 60:67–71CrossRefPubMedGoogle Scholar
  13. Taha SA, Islam MW, Ageel AM (1995) Effect of ambrein, a major constituent of ambergris, on masculine sexual behavior in rats. Arch Int Pharmacodyn Ther 329:283–294PubMedGoogle Scholar
  14. Taha SA, Raza M, El-Khawad IE (1998) Effect of ambrein on smooth muscle responses to various agonists. J Ethnopharmacol 60:19–26CrossRefPubMedGoogle Scholar
  15. Tanimoto H, Oritani T (1997) Synthesis of (+)-ambrein. Tetrahedron 53:3527–3536CrossRefGoogle Scholar
  16. Ueda D, Hoshino T, Sato T (2013) Cyclization of squalene from both termini: identification of an onoceroid synthase and enzymatic synthesis of ambrein. J Am Chem Soc 135:18335–18338CrossRefPubMedGoogle Scholar
  17. Zhang H, Qiang L, Cao Y, Feng X, Zheng Y, Zou H, Hui L, Yang J, Mo X (2014) Microbial production of sabinene—a new terpene-based precursor of advanced biofuel. Microb Cell Factories 13:20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Di Ke
    • 1
  • Qinggele Caiyin
    • 1
    • 2
    • 3
  • Fanglong Zhao
    • 1
  • Ting Liu
    • 1
  • Wenyu Lu
    • 1
    • 2
    • 3
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of System Bioengineering (Tianjin University)Ministry of EducationTianjinPeople’s Republic of China
  3. 3.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations