Advertisement

Biotechnology Letters

, Volume 40, Issue 2, pp 393–398 | Cite as

Engineering genome-reduced Bacillus subtilis for acetoin production from xylose

  • Panpan Yan
  • Yuanqing Wu
  • Li Yang
  • Zhiwen Wang
  • Tao Chen
Original Research Paper

Abstract

Objectives

To investigate the capacity of a genome-reduced Bacillus subtilis strain as chassis cell for acetoin production from xylose.

Results

To endow the genome-reduced Bacillus subtilis strain BSK814 with the ability to utilize xylose, we inserted a native xyl operon into its genome and deleted the araR gene. The resulting strain BSK814A2 produced 2.94 g acetoin/l from 10 g xylose/l, which was 39% higher than control strain BSK19A2. The deletion of the bdhA and acoA genes further improved xylose utilization efficiency and increased acetoin production to 3.71 g/l in BSK814A4. Finally, BSK814A4 produced up to 23.3 g acetoin/l from 50 g xylose/l, with a yield of 0.46 g/g xylose. Both the titer and yield were 39% higher than those of control strain BSK19A4.

Conclusions

As a chassis cell, genome-reduced B. subtilis showed significantly improved capacity for the production of the overflow product acetoin from xylose compared with wild-type strain.

Keywords

Acetoin Bacillus subtilis Chassis cell Genome reduction Transcription Xylose 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC-21176182, 21576191 and 21621004)

Supporting information

Supplementary Table 1—Strains used.

Supplementary Table 2—Plasmids used.

Supplementary Table 3—Primers used.

Supplementary material

10529_2017_2481_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 kb)

References

  1. Bae S-J, Kim S, Hahn J-S (2016) Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci Rep 6:27667CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bursac T, Gralnick JA, Gescher J (2017) Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 114:1283–1289CrossRefPubMedGoogle Scholar
  3. Förster AH, Beblawy S, Golitsch F, Gescher J (2017) Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnol Biofuel 10:65CrossRefGoogle Scholar
  4. Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuel 9:90CrossRefGoogle Scholar
  5. Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for l-threonine production. Microb Cell Fact 8:2–4CrossRefPubMedPubMedCentralGoogle Scholar
  6. Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X (2016) Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact 15:94CrossRefPubMedPubMedCentralGoogle Scholar
  7. Manabe K, Kageyama Y, Morimoto T, Ozawa T et al (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77:8370–8381CrossRefPubMedPubMedCentralGoogle Scholar
  8. Morimoto T, Kadoya R, Endo K, Tohata M et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81CrossRefPubMedPubMedCentralGoogle Scholar
  9. Morimoto T, Ara K, Ozaki K, Ogasawara N (2011) A simple method for introducing marker-free deletions in the Bacillus subtilis genome. Method Mol Biol 765:345–358CrossRefGoogle Scholar
  10. Sung H, Choe D, Kim S, Cho B-K (2016) Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 60:337–346CrossRefPubMedGoogle Scholar
  11. van Dijl J, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3CrossRefPubMedPubMedCentralGoogle Scholar
  12. Wang M, Fu J, Zhang X, Chen T (2012) Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett 34:1877–1885CrossRefPubMedGoogle Scholar
  13. Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503CrossRefPubMedGoogle Scholar
  14. Zhang L, Liu Q, Ge Y, Li L, Gao C, Xu P, Ma C (2016a) Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem 18:1560–1570CrossRefGoogle Scholar
  15. Zhang Y, Lin C-Y, Li X-M, Tang Z-K, Qiao J, Zhao G-R (2016b) DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis. J Ind Microbiol Biot 43:1681–1692CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Panpan Yan
    • 1
  • Yuanqing Wu
    • 1
  • Li Yang
    • 1
    • 2
  • Zhiwen Wang
    • 1
  • Tao Chen
    • 1
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.College of life ScienceShihezi UniversityShiheziPeople’s Republic of China

Personalised recommendations