Skip to main content
Log in

Engineering genome-reduced Bacillus subtilis for acetoin production from xylose

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To investigate the capacity of a genome-reduced Bacillus subtilis strain as chassis cell for acetoin production from xylose.

Results

To endow the genome-reduced Bacillus subtilis strain BSK814 with the ability to utilize xylose, we inserted a native xyl operon into its genome and deleted the araR gene. The resulting strain BSK814A2 produced 2.94 g acetoin/l from 10 g xylose/l, which was 39% higher than control strain BSK19A2. The deletion of the bdhA and acoA genes further improved xylose utilization efficiency and increased acetoin production to 3.71 g/l in BSK814A4. Finally, BSK814A4 produced up to 23.3 g acetoin/l from 50 g xylose/l, with a yield of 0.46 g/g xylose. Both the titer and yield were 39% higher than those of control strain BSK19A4.

Conclusions

As a chassis cell, genome-reduced B. subtilis showed significantly improved capacity for the production of the overflow product acetoin from xylose compared with wild-type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bae S-J, Kim S, Hahn J-S (2016) Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Sci Rep 6:27667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bursac T, Gralnick JA, Gescher J (2017) Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 114:1283–1289

    Article  CAS  PubMed  Google Scholar 

  • Förster AH, Beblawy S, Golitsch F, Gescher J (2017) Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. Biotechnol Biofuel 10:65

    Article  Google Scholar 

  • Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol Biofuel 9:90

    Article  Google Scholar 

  • Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for l-threonine production. Microb Cell Fact 8:2–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhu X, Zhang X, Fu J, Wang Z, Chen T, Zhao X (2016) Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine. Microb Cell Fact 15:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manabe K, Kageyama Y, Morimoto T, Ozawa T et al (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77:8370–8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto T, Kadoya R, Endo K, Tohata M et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 15:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto T, Ara K, Ozaki K, Ogasawara N (2011) A simple method for introducing marker-free deletions in the Bacillus subtilis genome. Method Mol Biol 765:345–358

    Article  CAS  Google Scholar 

  • Sung H, Choe D, Kim S, Cho B-K (2016) Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 60:337–346

    Article  PubMed  Google Scholar 

  • van Dijl J, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Fu J, Zhang X, Chen T (2012) Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnol Lett 34:1877–1885

    Article  PubMed  Google Scholar 

  • Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu Q, Ge Y, Li L, Gao C, Xu P, Ma C (2016a) Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chem 18:1560–1570

    Article  CAS  Google Scholar 

  • Zhang Y, Lin C-Y, Li X-M, Tang Z-K, Qiao J, Zhao G-R (2016b) DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis. J Ind Microbiol Biot 43:1681–1692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC-21176182, 21576191 and 21621004)

Supporting information

Supplementary Table 1—Strains used.

Supplementary Table 2—Plasmids used.

Supplementary Table 3—Primers used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Wu, Y., Yang, L. et al. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose. Biotechnol Lett 40, 393–398 (2018). https://doi.org/10.1007/s10529-017-2481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2481-4

Keywords

Navigation