Skip to main content
Log in

Magnetic immobilization of bacteria using iron oxide nanoparticles

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bacterial cell immobilization is a novel technique used in many areas of biosciences and biotechnology. Iron oxide nanoparticles have attracted much attention in bacterial cell immobilization due to their unique properties such as superparamagnetism, large surface area to volume ratio, biocompatibility and easy separation methodology. Adhesion is the basis behind many immobilization techniques and various types of interactions determine bacterial adhesion. Efficiency of bacterial cell immobilization using iron oxide nanoparticles (IONs) generally depends on the physicochemical properties of the IONs and surface properties of bacterial cells as well as environmental/culture conditions. Bacteria exhibit various metabolic responses upon interaction with IONs, and the potential applications of iron oxide nanoparticles in bacterial cell immobilization will be discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms 6. Biomaterials 28:5381–5389

    Article  CAS  PubMed  Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Arakha M et al (2015) Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. https://doi.org/10.1038/srep14813

    Google Scholar 

  • Aruguete DM, Hochella MF (2010) Bacteria–nanoparticle interactions and their environmental implications. Environ Chem 7:3–9

    Article  CAS  Google Scholar 

  • Assa F, Jafarizadeh-Malmiri H, Ajamein H, Anarjan N, Vaghari H, Sayyar Z, Berenjian A (2016) A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res 9:2203–2225

    Article  CAS  Google Scholar 

  • Assa F, Jafarizadeh-Malmiri H, Ajamein H, Vaghari H, Anarjan N, Ahmadi O, Berenjian A (2017) Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol 37:492–509

    Article  CAS  PubMed  Google Scholar 

  • Auffan M et al (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003–6009

    Article  CAS  Google Scholar 

  • Bharde A et al (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141

    Article  CAS  PubMed  Google Scholar 

  • Bharde AA et al (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794

    Article  CAS  PubMed  Google Scholar 

  • Borcherding J et al (2014) Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ Sci 1:123–132

    CAS  Google Scholar 

  • Borlido L, Azevedo A, Roque A, Aires-Barros M (2013) Magnetic separations in biotechnology. Biotechnol Adv 31:1374–1385

    Article  CAS  PubMed  Google Scholar 

  • Caccavo F, Schamberger PC, Keiding K, Nielsen PH (1997) Role of hydrophobicity in adhesion of the dissimilatory Fe (III)-reducing bacterium Shewanella alga to amorphous Fe (III) oxide. Appl Environ Microbiol 63:3837–3843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy M, Lee H, Trevors J (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Chatterjee S, Bandyopadhyay A, Sarkar K (2011) Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnol 9:1–7

    Article  Google Scholar 

  • Chen L, Razavi FS, Mumin A, Guo X, Sham T-K, Zhang J (2013) Multifunctional nanoparticles for rapid bacterial capture, detection, and decontamination. RSC Adv 3:2390–2397

    Article  CAS  Google Scholar 

  • Chua H, Wong P, Yu P, Li X (1998) The removal and recovery of copper (II) ions from wastewater by magnetite immobilized cells of Pseudomonas putida 5-X. Water Sci Technol 38:315–322

    CAS  Google Scholar 

  • Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Pol J Environ Stud 16:799–806

    CAS  Google Scholar 

  • Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunhill P (1984) Immobilizing bacteria. Cell 36:796–797

    Article  Google Scholar 

  • Ebrahiminezhad A, Davaran S, Rasoul-Amini S, Barar J, Moghadam M, Ghasemi Y (2012a) Synthesis, characterization and anti-Listeria monocytogenes effect of amino acid coated magnetite nanoparticles. Curr Nanosci 8:868–874

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2012b) Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull Korean Chem Soc 33:3957–3962

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Rasoul-Amini S, Davaran S, Barar J, Ghasemi Y (2014) Impacts of iron oxide nanoparticles on the invasion power of Listeria monocytogenes. Curr Nanosci 10:382–388

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Rasoul-Amini S, Kouhpayeh A, Davaran S, Barar J, Ghasemi Y (2015a) Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr Nanosci 11:113–119

    Article  CAS  Google Scholar 

  • Ebrahiminezhad A, Varma V, Yang S, Ghasemi Y, Berenjian A (2015b) Synthesis and application of amine functionalized iron oxide nanoparticles on Menaquinone-7 Fermentation: a step towards process intensification. Nanomaterials 6:1–9

    Article  PubMed Central  Google Scholar 

  • Ebrahiminezhad A, Varma V, Yang S, Berenjian A (2016) Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation. Appl Microbiol Biotechnol 100:173–180

    Article  CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Barzegar Y, Ghasemi Y, Berenjian A (2017) Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extract as a new generation of antimicrobials. Chem Ind Chem Eng Q 23:31–37

    Article  Google Scholar 

  • El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129:13392–13393

    Article  CAS  PubMed  Google Scholar 

  • Fletcher M (1977) The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can J Microbiol 23:1–6

    Article  Google Scholar 

  • Fletcher M (1996) Bacterial attachment in aquatic environments : A diversity of surfaces and adhesion strategies. In: Fletcher M (ed) Bacterial adhesion: molecular and ecological diversity. Wiley, New York, pp 1–24

    Google Scholar 

  • Galazzo JL, Bailey JE (1990) Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol Bioeng 36:417–426

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18:3145–3148

    Article  CAS  Google Scholar 

  • Gholami A, Rasoul-amini S, Ebrahiminezhad A, Seradj SH, Ghasemi Y (2015) Lipoamino acid coated superparamagnetic iron oxide nanoparticles concentration and time dependently enhanced growth of human hepatocarcinoma cell line (Hep-G2). J Nanomater 2015: Article No. 451405 https://doi.org/10.1155/2015/451405

  • Gholami A, Rasoul-Amini S, Ebrahiminezhad A, Abootalebi N, Niroumand U, Ebrahimi N, Ghasemi Y (2016) Magnetic properties and antimicrobial effect of amino and lipoamino acid coated iron oxide nanoparticles. Minerva Biotecnol 28:177–186

    Google Scholar 

  • Gnanaprakash G, Mahadevan S, Jayakumar T, Kalyanasundaram P, Philip J, Raj B (2007) Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater Chem Phys 103:168–175

    Article  CAS  Google Scholar 

  • Grasso D, Smets B, Strevett K, Machinist B, Van Oss C, Giese R, Wu W (1996) Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa. Environ Sci Technol 30:3604–3608

    Article  CAS  Google Scholar 

  • Gu H, Ho P-L, Tsang KW, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125:15702–15703

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005a) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005b) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Hilge-Rotmann B, Rehm H-J (1991) Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae. Appl Microbiol Biotechnol 34:502–508

    Article  CAS  Google Scholar 

  • Ho K-C, Tsai P-J, Lin Y-S, Chen Y-C (2004) Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal Chem 76:7162–7168

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-F, Wang Y-F, Yan X-P (2010) Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environ Sci Technol 44:7908–7913

    Article  CAS  PubMed  Google Scholar 

  • Janot R, Guérard D (2002) One-step synthesis of maghemite nanometric powders by ball-milling. J Alloys Compd 333:302–307

    Article  CAS  Google Scholar 

  • Jirků V (1999) Whole cell immobilization as a means of enhancing ethanol tolerance. J Ind Microbiol Biotechnol 22:147–151

    Article  Google Scholar 

  • Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett 7:380–383

    Article  CAS  PubMed  Google Scholar 

  • Kekutia S, Saneblidze L, Mikelashvili V, Markhulia J, Tatarashvili R, Daraselia D, Japaridze D (2015) A new method for the synthesis of nanoparticles for biomedical applications. Eur Chem Bull 4:33–36

    CAS  Google Scholar 

  • Khollam Y, Dhage S, Potdar H, Deshpande S, Bakare P, Kulkarni S, Date S (2002) Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe 3O4) powders. Mater Lett 56:571–577

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Li Y-G, Gao H-S, Li W-L, Xing J-M, Liu H-Z (2009) In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 100:5092–5096

    Article  CAS  PubMed  Google Scholar 

  • MacRae I (1985) Removal of pesticides in water by microbial cells adsorbed to magnetite. Water Res 19:825–830

    Article  CAS  Google Scholar 

  • MacRae I (1986) Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite. Water Res 20:1149–1152

    Article  Google Scholar 

  • MacRae I, Evans SK (1983) Factors influencing the adsorption of bacteria to magnetite in water and wastewater. Water Res 17:271–277

    Article  CAS  Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  PubMed  Google Scholar 

  • Martelli S et al (2000) Production of iron-oxide nanoparticles by laser-induced pyrolysis of gaseous precursors. Appl Surf Sci 154:353–359

    Article  Google Scholar 

  • Martins SCS, Martins CM, Fiúza LMCG, Santaella ST (2013) Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotechnol 12:4412–4418

    Article  CAS  Google Scholar 

  • McEldowney S, Fletcher M (1986a) Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. Microbiology 132:513–523

    Article  CAS  Google Scholar 

  • McEldowney S, Fletcher M (1986b) Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. Appl Environ Microbiol 52:460–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller M, Prinz G, Cheng S-F, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl Phys Lett 81:2211–2213

    Article  CAS  Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Pal S, Alocilja EC (2009) Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens Bioelectron 24:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Pascal C, Pascal J, Favier F, Elidrissi Moubtassim M, Payen C (1999) Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem Mater 11:141–147

    Article  CAS  Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18:9977–9984

    Article  CAS  Google Scholar 

  • Prozorov T et al (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957

    Article  CAS  Google Scholar 

  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017a) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem. https://doi.org/10.1016/j.procbio.2017.07.003 (In press)

    Google Scholar 

  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2017b) Iron oxide nanoparticles in modern microbiology and biotechnology. Crit Rev Microbiol 43:493–507

    Article  Google Scholar 

  • Ravindranath SP, Mauer LJ, Deb-Roy C, Irudayaraj J (2009) Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal Chem 81:2840–2846

    Article  CAS  PubMed  Google Scholar 

  • Rijnaarts HH, Norde W, Bouwer EJ, Lyklema J, Zehnder AJ (1995a) Reversibility and mechanism of bacterial adhesion. Colloids Surf B 4:5–22

    Article  CAS  Google Scholar 

  • Rijnaarts HH, Norde W, Lyklema J, Zehnder AJ (1995b) The isoelectric point of bacteria as an indicator for the presence of cell surface polymers that inhibit adhesion. Colloids Surf B 4:191–197

    Article  CAS  Google Scholar 

  • Rishton S et al (1997) Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron Eng 35:249–252

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2007) Magnetically modified microbial cells: a new type of magnetic adsorbents. China Particuol 5:19–25

    Article  CAS  Google Scholar 

  • Sasaki T, Terauchi S, Koshizaki N, Umehara H (1998) The preparation of iron complex oxide nanoparticles by pulsed-laser ablation. Appl Surf Sci 127:398–402

    Article  Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev Exp 1:5358. https://doi.org/10.3402/nano.v1i0.5358

    Article  Google Scholar 

  • Singh S, Barick K, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192:1539–1547

    Article  CAS  PubMed  Google Scholar 

  • Stenström T-A, Kjelleberg S (1985) Fimbriae mediated nonspecific adhesion of Salmonella typhimurium to mineral particles. Arch Microbiol 143:6–10

    Article  PubMed  Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  PubMed  Google Scholar 

  • Tartaj P, Gonzalez-Carreno T, Serna CJ (2001) Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv Mater 13:1620–1624

    Article  CAS  Google Scholar 

  • Tiberto P et al (2013) Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur Phys J B 86:1–6

    Article  Google Scholar 

  • Touhami A, Jericho MH, Boyd JM, Beveridge TJ (2006) Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol 188:370–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223:287–292

    Article  CAS  PubMed  Google Scholar 

  • Vaghari H, Eskandari M, Sobhani V, Berenjian A, Song Y, Jafarizadeh-Malmiri H (2015) Process intensification for production and recovery of biological products. Am J Biochem Biotechnol 11:37–43

    Article  Google Scholar 

  • Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N, Nasiri S (2016) Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett 38:223–233

    Article  CAS  PubMed  Google Scholar 

  • Van Iersel M, Brouwer-Post E, Rombouts F, Abee T (2000) Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme Microb Technol 26:602–607

    Article  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater Sci Eng, A 286:101–105

    Article  Google Scholar 

  • Wang Y, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Weinstein JS et al (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Article  CAS  PubMed  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Tong Z, Li S, Zhang X, Ying A (2008) Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater Lett 62:4053–4055

    Article  CAS  Google Scholar 

  • Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. PNAS 101:15027–15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19:14139–14194

    Article  PubMed  Google Scholar 

  • Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic Responses of Bacterial Cells to Immobilization. Molecules 21: Article Number: UNSP 958 https://doi.org/10.3390/molecules21070958

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Berenjian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranmadugala, D., Ebrahiminezhad, A., Manley-Harris, M. et al. Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40, 237–248 (2018). https://doi.org/10.1007/s10529-017-2477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2477-0

Keywords

Navigation