Biotechnology Letters

, Volume 40, Issue 2, pp 325–334 | Cite as

Characterization of l-rhamnose isomerase from Clostridium stercorarium and its application to the production of d-allose from d-allulose (d-psicose)

  • Min-Ju Seo
  • Ji-Hyeon Choi
  • Su-Hwan Kang
  • Kyung-Chul Shin
  • Deok-Kun Oh
Original Research Paper
  • 80 Downloads

Abstract

Objective

To characterize l-rhamnose isomerase (l-RI) from the thermophilic bacterium Clostridium stercorarium and apply it to produce d-allose from d-allulose.

Results

A recombinant l-RI from C. stercorarium exhibited the highest specific activity and catalytic efficiency (k cat/K m) for l-rhamnose among the reported l-RIs. The l-RI was applied to the high-level production of d-allose from d-allulose. The isomerization activity for d-allulose was maximal at pH 7, 75 °C, and 1 mM Mn2+ over 10 min reaction time. The half-lives of the l-RI at 65, 70, 75, and 80 °C were 22.8, 9.5, 1.9, and 0.2 h, respectively. To ensure full stability during 2.5 h incubation, the optimal temperature was set at 70 °C. Under the optimized conditions of pH 7, 70 °C, 1 mM Mn2+, 27 U l-RI l−1, and 600 g d-allulose l−1, l-RI from C. stercorarium produced 199 g d-allose l−1 without by-products over 2.5 h, with a conversion yield of 33% and a productivity of 79.6 g l−1 h−1.

Conclusion

To the best of our knowledge, this is the highest concentration and productivity of d-allose reported thus far.

Keywords

d-Allulose d-Allose Clostridium stercorarium Enzymatic production d-Psicose l-rhamnose isomerase 

Notes

Acknowledgements

This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ01113701), Rural Development Administration, Republic of Korea.

Supporting information

Supplementary Fig. 1—Effect of metal ions on the production of d-allose from d-allulose by l-RI from C. stercorarium.

Supplementary Fig. 2—Effect of pH on the production of d-allose from d-allulose by l-RI from C. stercorarium.

Supplementary Fig. 3—Effect of temperature on the production of d-allose from d-allulose by l-RI from C. stercorarium.

Supplementary Fig. 4—Effect of substrate concentration on the production of d-allose from d-allulose by l-RI from C. stercorarium.

Supplementary material

10529_2017_2468_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 57 kb)

References

  1. Bai W, Shen J, Zhu YM, Men Y, Sun YX, Ma YH (2015) Characteristics and kinetic properties of l-rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of d-allose. Food Sci Technol Res 21:13–22CrossRefGoogle Scholar
  2. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, Nagata Y, Tokuda M (2015) Rare sugar d-allulose: potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther 155:49–59CrossRefPubMedGoogle Scholar
  3. Kim YS, Shin KC, Lim YR, Oh DK (2013) Characterization of a recombinant l-rhamnose isomerase from Dictyoglomus turgidum and its application for l-rhamnulose production. Biotechnol Lett 35:259–264CrossRefPubMedGoogle Scholar
  4. Leang K, Takada G, Ishimura A, Okita M, Izumori K (2004) Cloning, nucleotide sequence, and overexpression of the l-rhamnose isomerase gene from Pseudomonas stutzeri in Escherichia coli. Appl Environ Microbiol 70:3298–3304CrossRefPubMedPubMedCentralGoogle Scholar
  5. Lim YR, Oh DK (2011) Microbial metabolism and biotechnological production of d-allose. Appl Microbiol Biotechnol 91:229–235CrossRefPubMedGoogle Scholar
  6. Lin CJ, Tseng WC, Lin TH, Liu SM, Tzou WS, Fang TY (2010) Characterization of a thermophilic L-rhamnose isomerase from Thermoanaerobacterium saccharolyticum NTOU1. J Agric Food Chem 58:10431–10436CrossRefPubMedGoogle Scholar
  7. Lin CJ, Tseng WC, Fang TY (2011) Characterization of a thermophilic l-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. J Agric Food Chem 59:8702–8708CrossRefPubMedGoogle Scholar
  8. Menavuvu BT, Poonperm W, Leang K, Noguchi N, Okada H, Morimoto K, Granstrom TB, Takada G, Izumori K (2006) Efficient biosynthesis of d-allose from d-psicose by cross-linked recombinant l-rhamnose isomerase: separation of product by ethanol crystallization. J Biosci Bioeng 101:340–345CrossRefPubMedGoogle Scholar
  9. Morimoto K, Park C-S, Ozaki M, Takeshita K, Shimonishi T, Granström TB, Takata G, Tokuda M, Izumori K (2006) Large scale production of d-allose from d-psicose using continuous bioreactor and separation system. Enz Microb Technol 38:855–859CrossRefGoogle Scholar
  10. Park CS (2014) Characterization of a recombinant l-rhamnose isomerase from Bacillus subtilis and its application on production of l-lyxose and l-mannose. Biotechnol Bioproc Eng 19:18–25CrossRefGoogle Scholar
  11. Park CS, Yeom SJ, Kim HJ, Lee SH, Lee JK, Kim SW, Oh DK (2007a) Characterization of ribose-5-phosphate isomerase of Clostridium thermocellum producing d-allose from d-psicose. Biotechnol Lett 29:1387–1391CrossRefPubMedGoogle Scholar
  12. Park HY, Park CS, Kim HJ, Oh DK (2007b) Substrate specificity of a galactose 6-phosphate isomerase from Lactococcus lactis that produces d-allose from d-psicose. J Biotechnol 132:88–95CrossRefPubMedGoogle Scholar
  13. Park CS, Yeom SJ, Lim YR, Kim YS, Oh DK (2010) Characterization of a recombinant thermostable l-rhamnose isomerase from Thermotoga maritima ATCC 43589 and its application in the production of l-lyxose and l-mannose. Biotechnol Lett 32:1947–1953CrossRefPubMedGoogle Scholar
  14. Poonperm W, Takata G, Okada H, Morimoto K, Granstrom TB, Izumori K (2007) Cloning, sequencing, overexpression and characterization of l-rhamnose isomerase from Bacillus pallidus Y25 for rare sugar production. Appl Microbiol Biotechnol 76:1297–1307CrossRefPubMedGoogle Scholar
  15. Prabhu P, Doan TT, Jeya M, Kang LW, Lee JK (2011) Cloning and characterization of a rhamnose isomerase from Bacillus halodurans. Appl Microbiol Biotechnol 89:635–644CrossRefPubMedGoogle Scholar
  16. Takata G, Uechi K, Taniguchi E, Kanbara Y, Yoshihara A, Morimoto K, Izumori K (2011) Characterization of Mesorhizobium loti l-rhamnose isomerase and its application to l-talose production. Biosci Biotechnol Biochem 75:1006–1009CrossRefPubMedGoogle Scholar
  17. Xu W, Zhang W, Zhang T, Jiang B, Mu W (2016) l-Rhamnose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 100:2985–2992CrossRefPubMedGoogle Scholar
  18. Yeom SJ, Seo ES, Kim YS, Oh DK (2011) Increased D-allose production by the R132E mutant of ribose-5-phosphate isomerase from Clostridium thermocellum. Appl Microbiol Biotechnol 89:1859–1866CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Min-Ju Seo
    • 1
  • Ji-Hyeon Choi
    • 1
  • Su-Hwan Kang
    • 1
  • Kyung-Chul Shin
    • 1
  • Deok-Kun Oh
    • 1
  1. 1.Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations