Advertisement

Biotechnology Letters

, Volume 40, Issue 2, pp 227–236 | Cite as

Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects

  • Muhammad Shakeel
  • Alicia Rodriguez
  • Urfa Bin Tahir
  • Fengliang Jin
Review

Abstract

Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.

Keywords

Gene expression Insects Internal controls Reference genes RT-qPCR 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31572069, 31371989). We thank the reviewers for their constructive comments to improve our manuscript. We apologize to those scientists whose work was not cited in this manuscript owing to space limitations.

Supporting Information

Supplementary Table 1—List of reference genes used in insect studies

Supplementary Table 2—Traditional reference genes showing low stability under different biotic and abiotic conditions, specifically in insects, published in important scientific journals.

Supplementary Table 3—Reference genes (traditional and novel) showing high stability under different biotic conditions, specifically in insects, published in important scientific journals.

Supplementary Table 4—Reference genes (traditional and novel) showing high stability under different abiotic conditions, specifically in insects, published in important scientific journals.

Compliance with ethical standards

Conflict of interest

The authors report that there are no conflicts of interest.

Supplementary material

10529_2017_2465_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 kb)

References

  1. An X-K, Hou Mao-lin, Liu Y-D (2015) Reference gene selection and evaluation for gene expression studies using qRT-PCR in the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). J Econ Entomol 109:879–886CrossRefGoogle Scholar
  2. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefPubMedGoogle Scholar
  3. Bankowski MJ, Anderson SM (2004) Real-time nucleic acid amplification in clinical microbiology. Clin Microbiol Newsl 26:9–15CrossRefGoogle Scholar
  4. Brodmann PD, Ilg EC, Berthoud H, Herrmann A (2002) Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food. J AOAC Int 85:646–653PubMedGoogle Scholar
  5. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193CrossRefPubMedGoogle Scholar
  6. Bustin SA et al (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol.  https://doi.org/10.1186/1471-2199-11-74 PubMedPubMedCentralGoogle Scholar
  7. Cheng D, Zhang Z, He X, Liang G (2013) Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8:e57718CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cusson M (2008) The molecular biology toolbox and its use in basic and applied insect science. Bioscience 58:691–700CrossRefGoogle Scholar
  9. de Boer ME et al (2009) Reference genes for qRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola). BMC Mol Biol.  https://doi.org/10.1186/1471-2199-10-54 Google Scholar
  10. De Jonge H et al (2007) Evidence based selection of housekeeping genes. PLoS ONE 2:e898CrossRefPubMedPubMedCentralGoogle Scholar
  11. de Kok JB et al (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest 15:159–185Google Scholar
  12. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechnology 37:112–119Google Scholar
  13. Feuer R, Vlaic S, Arlt J, Sawodny O, Dahmen U, Zanger UM, Thomas M (2015) LEMming: A linear error model to normalize parallel quantitative real-time PCR (qPCR) data as an alternative to reference gene based methods. PLoS ONE 10:e0135852CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fu W et al (2013) Exploring valid reference genes for quantitative real-time PCR analysis in Plutella xylostella (Lepidoptera: Plutellidae). Int J Biol Sci 9:792–802CrossRefPubMedPubMedCentralGoogle Scholar
  15. Galiveti CR, Rozhdestvensky TS, Brosius J, Lehrach H, Konthur Z (2010) Application of housekeeping npcRNAs for quantitative expression analysis of human transcriptome by real-time PCR. RNA 16:450–461CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Exp Bot 60:487–493CrossRefGoogle Scholar
  17. Hellemans J, Mortier G, DePaepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genom Biol.  https://doi.org/10.1186/gb-2007-8-2-r19 Google Scholar
  18. Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) PCR technology for screening and quantification of genetically modified organisms (GMOs). Anal Bioanal Chem 375:985–993CrossRefPubMedGoogle Scholar
  19. Hsiao L-L et al (2001) A compendium of gene expression in normal human tissues. Physiol Genom 7:97–104CrossRefGoogle Scholar
  20. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284CrossRefPubMedGoogle Scholar
  21. Jung M, Ramankulov A, Roigas J, Johannsen M, Ringsdorf M, Kristiansen G, Jung K (2007) In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol.  https://doi.org/10.1186/1471-2199-8-47 PubMedPubMedCentralGoogle Scholar
  22. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kubista M et al (2006) The real-time polymerase chain reaction. Mol Aspects Med 27:95–125CrossRefPubMedGoogle Scholar
  24. Li R et al (2013) Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 8:e53006CrossRefPubMedPubMedCentralGoogle Scholar
  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  26. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311–323CrossRefGoogle Scholar
  27. Lu Y, Yuan M, Gao X, Kang T, Zhan S, Wan H, Li J (2013) Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8:e68059CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lu Y et al (2015) Evaluation and validation of reference genes for SYBR Green qRT-PCR normalization in Sesamia inferens (Lepidoptera: Noctuidae). J Asia-Pac. Entomol 18:669–675CrossRefGoogle Scholar
  29. Mamidala P, Rajarapu SP, Jones SC, Mittapalli O (2011) Identification and validation of reference genes for quantitative real-time polymerase chain reaction in Cimex lectularius. J Med Entomol 48:947–951CrossRefPubMedGoogle Scholar
  30. Niu J, Cappelle K, de Miranda JR, Smagghe G, Meeus I (2014) Analysis of reference gene stability after Israeli acute paralysis virus infection in bumblebees Bombus terrestris. J Invert Pathol 115:76–79CrossRefGoogle Scholar
  31. Nonis A, De Nardi B, Nonis A (2014) Choosing between RT-qPCR and RNA-seq: a back-of-the-envelope estimate towards the definition of the break-even-point. Anal Bioanal Chem 406:3533–3536PubMedGoogle Scholar
  32. Pabinger S, Rödiger S, Kriegner A, Vierlinger K, Weinhäusel A (2014) A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol Det Quant 1:23–33Google Scholar
  33. Park Y, Kim J, Choi JR, Song J, Chung JS, Lee K-A (2008) Evaluation of multiplex PCR assay using dual priming oligonucleotide system for detection mutation in the Duchenne muscular dystrophy gene. Korean J Lab Med 28:386–391CrossRefPubMedGoogle Scholar
  34. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pfaffl MW (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) AZ of quantitative PCR. International University Line (IUL), La Jolla, pp 87–212Google Scholar
  36. Ponton F, Chapuis M-P, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Ins Physiol 57:840–850CrossRefGoogle Scholar
  37. Popovici V, Goldstein DR, Antonov J, Jaggi R, Delorenzi M, Wirapati P (2009) Selecting control genes for RT-QPCR using public microarray data. BMC Bioinform.  https://doi.org/10.1186/1471-2105-10-42 Google Scholar
  38. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28:848–861CrossRefPubMedGoogle Scholar
  39. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862CrossRefPubMedGoogle Scholar
  40. Rhinn H, Marchand-Leroux C, Croci N, Plotkine M, Scherman D, Escriou V (2008) Housekeeping while brain’s storming validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Mol Biol.  https://doi.org/10.1186/1471-2199-9-62 PubMedPubMedCentralGoogle Scholar
  41. Rodrigues TB et al (2014) Validation of reference housekeeping genes for gene expression studies in western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9:e109825CrossRefPubMedGoogle Scholar
  42. Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ (2011) Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods. Int J Food Microbiol 149:226–235CrossRefPubMedGoogle Scholar
  43. Rodríguez A, Rodríguez M, Córdoba JJ, Andrade MJ (2015) Design of primers and probes for quantitative real-time PCR methods. PCR Primer Des 1275:31–56CrossRefGoogle Scholar
  44. Rodríguez-Lázaro D, Hernández M (2013) Real-time PCR in food science: introduction. Curr Issues Mol Biol 15:25–38PubMedGoogle Scholar
  45. Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, Jacobs FJ (2008) Reference gene selection for insect expression studies using quantitative real-time PCR: The head of the honeybee, Apis mellifera, after a bacterial challenge. J Ins Sci.  https://doi.org/10.1673/031.008.3301 Google Scholar
  46. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  47. Shakeel M, Zhu X, Kang T, Wan H, Li J (2015) Selection and evaluation of reference genes for quantitative gene expression studies in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Asia-Pac Entomol 18:123–130CrossRefGoogle Scholar
  48. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol.  https://doi.org/10.1186/1471-2199-7-33 PubMedPubMedCentralGoogle Scholar
  49. Sobhy H, Colson P (2012) Gemi: PCR primers prediction from multiple alignments. Comp Funct Genomics.  https://doi.org/10.1155/2012/783138 PubMedPubMedCentralGoogle Scholar
  50. Spinsanti G, Panti C, Lazzeri E, Marsili L, Casini S, Frati F, Fossi CM (2006) Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies. BMC Mol Biol.  https://doi.org/10.1186/1471-2199-7-32 PubMedPubMedCentralGoogle Scholar
  51. Suda T, Katoh M, Hiratsuka M, Fujiwara M, Irizawa Y, Oshimura M (2003) Use of real-time RT-PCR for the detection of allelic expression of an imprinted gene. Int J Mol Med 12:243–246PubMedGoogle Scholar
  52. Sun M, Lu M-X, Tang X-T, Du Y-Z (2015) Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae). PLoS ONE 10:e0115979CrossRefPubMedPubMedCentralGoogle Scholar
  53. Suzuki T, Higgins P, Crawford D (2000) Control selection for RNA quantitation. Biotechnology 29:332–337Google Scholar
  54. Teng X, Zhang Z, He G, Yang L, Li F (2012) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in four lepidopteran insects. J Insect Sci.  https://doi.org/10.1673/031.012.6001 PubMedPubMedCentralGoogle Scholar
  55. Thorrez L et al (2008) Using ribosomal protein genes as reference: a tale of caution. PLoS ONE 3:e1854CrossRefPubMedPubMedCentralGoogle Scholar
  56. Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159CrossRefPubMedGoogle Scholar
  57. van Doorn R, Szemes M, Bonants P, Kowalchuk GA, Salles JF, Ortenberg E, Schoen CD (2007) Quantitative multiplex detection of plant pathogens using a novel ligation probe-based system coupled with universal, high-throughput real-time PCR on OpenArrays™. BMC Genom.  https://doi.org/10.1186/1471-2164-8-276 Google Scholar
  58. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genom Biol 3:0034CrossRefGoogle Scholar
  59. Vandesompele J, Kubista M, Pfaffl MW (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-time PCR: current technology and applications. Caister Academic Press, London, pp 47–64Google Scholar
  60. Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31:e154–e154CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang GH, Xia QY, Cheng DJ, Duan J, Zhao P, Chen J, Zhu L (2008) Reference genes identified in the silkworm Bombyx mori during metamorphism based on oligonucleotide microarray and confirmed by qRT-PCR. Ins Sci 15:405–413CrossRefGoogle Scholar
  62. Waxman S, Wurmbach E (2007) De-regulation of common housekeeping genes in hepatocellular carcinoma. BMC Genom.  https://doi.org/10.1186/1471-2164-8-243 Google Scholar
  63. Yang Q et al (2014) Selection and assessment of reference genes for quantitative PCR normalization in migratory locust Locusta migratoria (Orthoptera: Acrididae). PLoS ONE 9:e98164CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yang C, Pan H, Noland JE, Zhang D, Zhang Z, Liu Y, Zhou X (2015) Selection of reference genes for RT-qPCR analysis in a predatory biological control agent, Coleomegilla maculata (Coleoptera: Coccinellidae). Scientific Rep.  https://doi.org/10.1038/srep18201 Google Scholar
  65. Yuan M et al (2014) Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR. PLoS ONE 9:e86503CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhang S et al (2015) Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 555:393–402CrossRefPubMedGoogle Scholar
  67. Zheng Y-T, Li H-B, Lu M-X, Du Y-Z (2014) Evaluation and validation of reference genes for qRT-PCR normalization in Frankliniella occidentalis (Thysanoptera: Thripidae). PLoS ONE 9:e111369CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhong M, Wang X, Wen J, Cai J, Wu C, Aly SM (2013) Selection of reference genes for quantitative gene expression studies in the house fly (Musca domestica L.) using reverse transcription quantitative real-time PCR. Acta Biochim Biophys Sin 45:1067–1073CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Muhammad Shakeel
    • 1
  • Alicia Rodriguez
    • 2
  • Urfa Bin Tahir
    • 3
  • Fengliang Jin
    • 1
  1. 1.Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
  2. 2.Faculty of Veterinary Science, Food Hygiene and Safety, Meat and Meat Products Research InstituteUniversity of ExtremaduraCáceresSpain
  3. 3.Department of Aquatic Animal Medicine, College of FisheriesHuazhong Agricultural UniversityWuhanChina

Personalised recommendations