Biotechnology Letters

, Volume 39, Issue 5, pp 759–765 | Cite as

Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis

  • Han Bin Pek
  • Pei Yu Lim
  • Chengcheng Liu
  • Dong-Yup Lee
  • Xuezhi Bi
  • Fong Tian Wong
  • Dave Siak-Wei Ow
Original Research Paper



To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis.


The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively.


Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.


BfrA Invertase Lactococcus lactis Secretary peptide (USP45) Thermogata maritima Thermostable enzyme 



We would like to thank the Microbial Cell Group with special thanks to Crystal Tan Lee Ling for their technical support. This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research) and A*STAR Joint Council Office Grant Call (No. 1431AFG126).


  1. Adamberg K, Seiman A, Vilu R (2012) Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes. PLoS ONE 7:e48223CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arioli S, Zambelli D, Guglielmetti S, De Noni I, Pedersen MB, Pedersen PD, Dal Bello F, Mora D (2013) Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl Environ Microbiol 79:376–380CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bagal-Kestwal D, Karve MS, Kakade B, Pillai VK (2008) Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosens Bioelectron 24:657–664CrossRefPubMedGoogle Scholar
  4. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760:1304–1313CrossRefPubMedGoogle Scholar
  5. Chen J, Shen J, Ingvar Hellgren L, Ruhdal Jensen P, Solem C (2015) Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci Rep 5:14199CrossRefPubMedPubMedCentralGoogle Scholar
  6. Du L, Pang H, Wang Z, Lu J, Wei Y, Huang R (2013) Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH. PLoS ONE 8:e62306CrossRefPubMedPubMedCentralGoogle Scholar
  7. Durrschmid K, Marzban G, Durrschmid E, Striedner G, Clementschitsch F, Cserjan-Puschmann M, Bayer K (2003) Monitoring of protein profiles for the optimization of recombinant fermentation processes using public domain databases. Electrophoresis 24:303–310CrossRefPubMedGoogle Scholar
  8. Gu C, Lan T, Shi H, Lu Y (2015) Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer. Anal Chem 87:7676–7682CrossRefPubMedGoogle Scholar
  9. Huynh E, Li J (2015) Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing. Appl Microbiol Biotechnol 99:4667–4677CrossRefPubMedGoogle Scholar
  10. Jorgensen CM, Vrang A, Madsen SM (2014) Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol Lett 351:170–178CrossRefPubMedGoogle Scholar
  11. Khemariya P, Singh S, Nath G, Gulati AK (2016) A review on industrially important Lactococcus lactis: general information, metabolism and genotypic identification tools. Anchor Academic Publishing, New YorkGoogle Scholar
  12. Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584PubMedPubMedCentralGoogle Scholar
  13. Kotwal SM, Shankar V (2009) Immobilized invertase biotechnol Adv 27:311–322CrossRefPubMedGoogle Scholar
  14. Kulshrestha S, Tyagib P, Sindhia V, Yadavillic KS (2013) Invertase and its applications—a brief review. J Pharm Res 7:792–797Google Scholar
  15. Li X, Xing Y, Guo L, Lv X, Song H, Xi T (2014) Oral immunization with recombinant Lactococcus lactis delivering a multi-epitope antigen CTB-UE attenuates Helicobacter pylori infection in mice. Pathog Dis 72:78–86CrossRefPubMedGoogle Scholar
  16. Liebl W, Brem D, Gotschlich A (1998) Analysis of the gene for beta-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli. Appl Microbiol Biotechnol 50:55–64CrossRefPubMedGoogle Scholar
  17. Linares DM, Kok J, Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 192:5806–5812. doi: 10.1128/JB.00533-10 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Martinez D, Cutino-Avila B, Perez ER, Menendez C, Hernandez L, Del Monte-Martinez A (2014a) A thermostable exo-beta-fructosidase immobilised through rational design. Food Chem 145:826–831CrossRefPubMedGoogle Scholar
  19. Martinez D, Menéndez C, Echemendia FM, Pérez ER, Trujillo LE, Sobrino A, Ramírez R, Quintero Y, Hernández L (2014b) Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate. Microb Cell Fact 13:87CrossRefPubMedPubMedCentralGoogle Scholar
  20. Menendez C, Martinez D, Trujillo LE, Mazola Y, Gonzalez E, Perez ER, Hernandez L (2013) Constitutive high-level expression of a codon-optimized beta-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol 97:1201–1212CrossRefPubMedGoogle Scholar
  21. Motta JP, Bermúdez-Humarán LG, Deraison C, Martin L et al (2012) Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med 4:158ra144CrossRefPubMedGoogle Scholar
  22. Pek HB, Klement M, Ang KS, Chung BK, Ow DS, Lee DY (2015) Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli. Enz Microb Technol 75–76:57–63CrossRefGoogle Scholar
  23. Perez de los Santos AI, Cayetano-Cruz M, Gutierrez-Anton M, Santiago-Hernandez A, Plascencia-Espinosa M, Farres A, Hidalgo-Lara ME (2016) Improvement of catalytical properties of two invertases highly tolerant to sucrose after expression in Pichia pastoris. Effect of glycosylation on enzyme properties. Enz Microb Technol 83:48–56CrossRefGoogle Scholar
  24. Renye JA Jr, Somkuti GA (2015) Nisin-induced expression of a recombinant antihypertensive peptide in dairy lactic acid bacteria. Biotechnol Lett 37:1447–1454CrossRefPubMedGoogle Scholar
  25. Robichon C, Luo J, Causey TB, Benner JS, Samuelson JC (2011) Engineering Escherichia coli BL21(DE3) derivative strains to minimize E. coli protein contamination after purification by immobilized metal affinity chromatography. Appl Environ Microbiol 77:4634–4646CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172PubMedPubMedCentralGoogle Scholar
  27. Samazan F, Rokbi B, Seguin D, Telles F et al (2015) Production, secretion and purification of a correctly folded staphylococcal antigen in Lactococcus lactis. Microb Cell Fact 14:104CrossRefPubMedPubMedCentralGoogle Scholar
  28. Steen A, Palumbo E, Deghorain M, Cocconcelli PS, Delcour J, Kuipers OP, Kok J, Buist G, Hols P (2005) Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. J Bacteriol 187:114–124CrossRefPubMedPubMedCentralGoogle Scholar
  29. Subramaniam M, Baradaran A, Rosli MI, Rosfarizan M, Khatijah Y, Raha AR (2012) Effect of signal peptides on the secretion of beta-cyclodextrin glucanotransferase in Lactococcus lactis NZ9000. J Mol Microbiol Biotechnol 22:361–372CrossRefPubMedGoogle Scholar
  30. Sugimoto S, Abdullah Al M, Sonomoto K (2008) Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J Biosci Bioeng 106:324–336CrossRefPubMedGoogle Scholar
  31. Tuite MF, Oliver SG (2013) Saccharomyces. Springer, USGoogle Scholar
  32. Walsh G (2002) Proteins: biochemistry and biotechnology. Wiley, New YorkGoogle Scholar
  33. Zhang G, Mills DA, Block DE (2009) Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol 75:1080–1087CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Bioprocessing Technology InstituteA*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Molecular Engineering Laboratory, Biomedical Sciences InstitutesA*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations