Biotechnology Letters

, Volume 39, Issue 5, pp 635–645 | Cite as

Current advances in biological production of propionic acid

  • Ismail Eş
  • Amin Mousavi Khaneghah
  • Seyed Mohammad Bagher Hashemi
  • Mohamed Koubaa
REVIEW

Abstract

Propionic acid and its derivatives are considered “Generally Recognized As Safe” food additives and are generally used as an anti-microbial and anti-inflammatory agent, herbicide, and artificial flavor in diverse industrial applications. It is produced via biological pathways using Propionibacterium and some anaerobic bacteria. However, its commercial chemical synthesis from the petroleum-based feedstock is the conventional production process bit results in some environmental issues. Novel biological approaches using microorganisms and renewable biomass have attracted considerable recent attention due to economic advantages as well as great adaptation with the green technology. This review provides a comprehensive overview of important biotechnological aspects of propionic acid production using recent technologies such as employment of co-culture, genetic and metabolic engineering, immobilization technique and efficient bioreactor systems.

Keywords

Bioreactor Immobilization Metabolic engineering Microbial production Propionic acid 

Notes

Acknowledgements

I. Es thanks the São Paulo Research Foundation (FAPESP) for the scholarship of (Grant No. 2015/14468-0). A. Mousavi Khaneghah thanks the support of CNPq-TWAS Postgraduate Fellowship (Grant #3240274290).

Compliance with ethical standards

Conflict of interest

The authors confirm that this article contents no conflicts or declaration of interest.

References

  1. Ahmadi N, Khosravi-Darani K, Zarean-Shahraki S, Mortazavian M, Mashayekh SM (2015) Fed-Batch fermentation for propionic acetic and lactic acid production. Orient J Chem 31:581–590CrossRefGoogle Scholar
  2. Ammar EM, Jin Y, Wang Z, Yang ST (2014) Metabolic engineering of Propionibacterium freudenreichii: effect of expressing phosphoenolpyruvate carboxylase on propionic acid production. Appl Microbiol Biotechnol 98:7761–7772CrossRefPubMedGoogle Scholar
  3. Baer A, Ryba I (1995) Influence of casein proteolysis by starter bacteria, rennet and plasmin on the growth of propionibacteria in Swiss-type cheese. Lait 75:391–400CrossRefGoogle Scholar
  4. Boyaval P, Corre C, Terré S (1987) Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis. Biotechnol Lett 9:207–212CrossRefGoogle Scholar
  5. Campbell B, Fernandez L, Pamela MK, Marrone PG (2009) Patent: Propionic acid as an herbicide. US Patent Application 12/257,472Google Scholar
  6. Chen F, Feng X, Xu H, Zhang D, Ouyang P (2012) Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015. J Biotechnol 164:202–210CrossRefPubMedGoogle Scholar
  7. Clausen EC, Gaddy JC (1984) Organic acids from biomass by continuous fermentation. Chem Eng Prog 80:59–68Google Scholar
  8. Comyns AE (2014) Encyclopedic dictionary of named processes in chemical technology, 4th edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  9. Coronado C, Botello JE, Herrera F (2001) Study and mathematical modeling of the production of propionic acid by Propionibacterium acidipropionici immobilized in a stirred tank fermentor. Biotechnol Prog 17:669–675CrossRefPubMedGoogle Scholar
  10. Degenhardt D, Cessna AJ, Raina R, Farenhorst A, Pennock DJ (2011) Dissipation of six acid herbicides in water and sediment of two Canadian prairie wetlands. Environ Toxicol Chem 30:1982–1989CrossRefPubMedGoogle Scholar
  11. Del Nobile MA, Lecce L, Conte A, Laverse J (2015) Bio-based device to control active compound release for food preservation: the case of propionic acid. J Food Proc Preserv. doi: 10.1111/jfpp.12675 Google Scholar
  12. Dishisha T, Alvarez MT, Hatti-Kaul R (2012) Batch and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol 118:553–562CrossRefPubMedGoogle Scholar
  13. Dishisha T, Stahl A, Lundmark S, Hatti-Kaul R (2013) An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresour Technol 135:504–512CrossRefPubMedGoogle Scholar
  14. Eş I, Vieira JD, Amaral AC (2015) Principles, techniques and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082CrossRefPubMedGoogle Scholar
  15. Eş I, Ribeiro MC, dos Santos SR, Khaneghah AM, Rodriguez AG, Amaral AC (2016) Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix. Bioprocess Biosyst Eng. doi: 10.1007/s0449-016-1625-6 PubMedGoogle Scholar
  16. Farhadi S, Khosravi-Darani K, Mashayekh M, Mortazavian SAM, Mohammadi A, Shahraz F (2013) Production of propionic acid in a fermented dairy beverage. Int J Dairy Technol 66:127–134CrossRefGoogle Scholar
  17. Feng X, Xu H, Yao J, Li S, Zhu H, Ouyang P (2010a) Kinetic analysis and pH-shift control strategy for propionic acid production with Propionibacterium Freudenreichii CCTCC M207015. Appl Biochem Biotechnol 160:343–349CrossRefPubMedGoogle Scholar
  18. Feng X, Chen F, Xu H, Wu B, Yao J, Ying HJ, Ouyang PK (2010b) Propionic acid fermentation by Propionibacterium freudenreichii CCTCC M207015 in a multi-point fibrous-bed bioreactor. Bioprocess Biosyst Eng 33:1077–1085CrossRefPubMedGoogle Scholar
  19. Feng XH, Chen F, Xu H, Wu B, Li H, Li S, Ouyang PK (2011) Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresour Technol 102:6141–6146CrossRefPubMedGoogle Scholar
  20. Goers L, Freemont P, Polizzi KM (2014) Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface 11(96):20140065CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goldberg I, Rokem JS (2009) In: Schaechter M (ed) Encylopedia of microbiology, 3rd edn. Springer, New YorkGoogle Scholar
  22. Honoré AH, Thorsen M, Skov T (2013) Liquid chromatography–mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria. Anal Bioanal Chem 405:8151–8170CrossRefPubMedGoogle Scholar
  23. Huang CB, Alimova Y, Myers TM, Ebersole JL (2011) Short-and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 56:650–654CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jiang L, Cui H, Zhu L, Hu Y, Xu X, Li S, Huang H (2015) Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chem 17:250–259CrossRefGoogle Scholar
  25. Kagliwal LD, Survase SA, Singhal RS, Granström T (2013) Wheat flour based propionic acid fermentation: an economic approach. Bioresour Technol 129:694–699CrossRefPubMedGoogle Scholar
  26. Kandasamy V, Vaidyanathan H, Djurdjevic I, Jayamani E, Ramachandran KB, Buckel W, Jayaraman G, Ramalingam S (2013) Engineering Escherichia coli with acrylate pathway genes for propionic acid synthesis and its impact on mixed-acid fermentation. Appl Microbiol Biotechnol 97:1191–1200CrossRefPubMedGoogle Scholar
  27. Leatherhead Food Research (2014) Global propionic acid market by application (animal feed, calcium & sodium propionate, cellulose acetate propionate) expected to reach US$ 1.53 billion by 2020. http://www.grandviewresearch.com/industry-analysis/propionic-acid-market. Accessed 4 Nov 2016
  28. Liang ZX, Li L, Li S, Cai YH, Yang ST, Wang JF (2012) Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrousbed bioreactor. Bioproc Biosyst Eng 35:915–921CrossRefGoogle Scholar
  29. Liu JAP, Moon NJ (1982) Commensalistic interaction between Lactobacillus acidophilus and Propionibacterium shermanii. Appl Environ Microbiol 44:715–722PubMedPubMedCentralGoogle Scholar
  30. Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381CrossRefPubMedGoogle Scholar
  31. Loaiza-Ambuludi S, Panizza M, Oturan N, Ozcan Oturan MA (2013) Electro-fenton degradation of anti-inflammatory drug ibuprofen in hydroorganic medium. J Electroanal Chem 702:31–36CrossRefGoogle Scholar
  32. Luck E, Jager M (2012) Antimicrobial food additives: characteristics, uses, effects. Springer, LondonGoogle Scholar
  33. Mani-Lopez E, García HS, López-Malo A (2012) Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721CrossRefGoogle Scholar
  34. Ossenkopp KP, Foley KA, Gibson J, Fudge MA, Kavaliers M, Cain DP, MacFabe DF (2012) Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats. Behav Brain Res 227:134–141CrossRefPubMedGoogle Scholar
  35. Parizzi LP, Grassi MC, Llerena LA, Carazzolle MF, Queiroz VL, Lunardi I, Zeidler AF, Teixeira PJ, Mieczkowski P, Rincones J, Pereira GA (2012) The genome sequence of Propionibacterium acidipropionici provides insights into its biotechnological and industrial potential. BMC Genom 13:1CrossRefGoogle Scholar
  36. Park SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH (2011) Use of organic acids to inactivate Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci 76:M293–M298CrossRefPubMedGoogle Scholar
  37. Rehberger TG, Glatz BA (1990) Characterization of Propionibacterium plasmids. Appl Environ Microbiol 56:864–871PubMedPubMedCentralGoogle Scholar
  38. Rivero S, Giannuzzi L, García MA, Pinotti A (2013) Controlled delivery of propionic acid from chitosan films for pastry dough conservation. J Food Eng 116:524–531CrossRefGoogle Scholar
  39. Rodriguez BA, Stowers CC, Pham V, Cox BM (2014) The production of propionic acid, propanol and propylene via sugar fermentation: an industrial perspective on the progress, technical challenges and future outlook. Green Chem 16:1066–1076CrossRefGoogle Scholar
  40. Sabra W, Dietz D, Zeng AP (2013) Substrate-limited co-culture for efficient production of propionic acid from flour hydrolysate. Appl Microbiol Biotechnol 97:5771–5777CrossRefPubMedGoogle Scholar
  41. Smid EJ, Lacroix C (2013) Microbe–microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154CrossRefPubMedGoogle Scholar
  42. Stowers CC, Cox BM, Rodriguez BA (2014) Development of an industrializable fermentation process for propionic acid production. J Ind Microbiol Biotechnol 41:837–852CrossRefPubMedGoogle Scholar
  43. Suwannakham S, Huang Y, Yang ST (2006) Construction and characterization of ack knock-out mutants of Propionibacterium acidipropionici for enhanced propionic acid fermentation. Biotechnol Bioeng 94:383–395CrossRefPubMedGoogle Scholar
  44. Turan-Zitouni G, Yurttaş L, Kaplancıklı ZA, Can ÖD, Özkay ÜD (2015) Synthesis and anti-nociceptive, anti-inflammatory activities of new aroyl propionic acid derivatives including N-acylhydrazone motif. Med Chem Res 24:2406–2416CrossRefGoogle Scholar
  45. Wales AD, Allen VM, Davies RH (2010) Chemical treatment of animal feed and water for the control of Salmonella. Foodborne Pathog Dis 7:3–15CrossRefPubMedGoogle Scholar
  46. Wallenius J, Pahimanolis N, Zoppe J, Kilpelainen P, Master E, Ilvesniemi J, Seppala J, Eerikainen T, Ojamo H (2015) Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix. Bioresour Technol 197:1–6CrossRefPubMedGoogle Scholar
  47. Wang Z, Ammar EM, Zhang A, Wang L, Lin M, Yang ST (2015) Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA:succinate CoA transferase. Metab Eng 27:46–56CrossRefPubMedGoogle Scholar
  48. Wolf MA, Barnes KD (2014) Patent: Promentis Pharmaceuticals Inc. Propionic acids, propionic acid esters, and related compounds. US Patent 8,815,905Google Scholar
  49. Yang ST, El-Ensashy H, Thongchul N (2013) Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, HobokenCrossRefGoogle Scholar
  50. Zhang A, Yang ST (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Proc Biochem 44:1346–1351CrossRefGoogle Scholar
  51. Zhu Y, Li J, Tan M, Liu L, Jiang L, Sun J, Lee P, Du G, Chen J (2010) Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresour Technol 101:8902–8906CrossRefPubMedGoogle Scholar
  52. Zhu L, Wei P, Cai J, Zhu X, Wang Z, Huang L, Xu Z (2012) Improving the productivity of propionic acid with FBB-immobilized cells of an adapted acid-tolerant Propionibacterium acidipropionici. Bioresour Technol 112:248–253CrossRefPubMedGoogle Scholar
  53. Zhuge X, Liu L, Shin HD, Chen RR, Li J, Du G, Chen J (2013) Development of a Propionibacterium-Escherichia coli shuttle vector as a useful tool for metabolic engineering of Propionibacterium jensenii, an efficient producer of propionic acid. Appl Environ Microbiol 79:4595–4602CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhuge X, Liu L, Shin HD, Li J, Du G, Chen J (2014) Improved propionic acid production from glycerol with metabolically engineered Propionibacterium jensenii by integrating fed-batch culture with a pH-shift control strategy. Bioresour Technol 152:519–525CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Material and Bioprocess Engineering, Faculty of Chemical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Food Science, Faculty of Food EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  3. 3.Department of Food Science and Technology, College of AgricultureFasa UniversityFasaIran
  4. 4.Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOMEA 4297 TIMR), Centre de Recherche de RoyallieuCompiègne CedexFrance

Personalised recommendations