Skip to main content
Log in

The structure of a small GTPaseRhoA in complex with PDZRhoGEF and the inhibitor HL47

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To study the structure of a small GTPaseRhoA in complex with PDZRhoGEF and the inhibitor HL47, and to provide an easier template for R&D of RhoA inhibitor.

Results

Our initial attempts to obtain a binary complex of RhoA with the inhibitor HL47 were unsuccessful probably due to the presence of GDP. By targeting a ternary complex involving the RhoA-specific guanine nucleotide exchange factor PDZRhoGEF, we eliminated GDP and obtained a 2.3 Å structure of the RhoA-PDZRhoGEF-inhibitor HL47 ternary complex.

Conclusion

This structure provides a new template for target-based pharmaceutical design against RhoA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275:1308–1311

    Article  CAS  PubMed  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) Acta Cryst D66:12–21

    Google Scholar 

  • Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Cryst D50:760–763

    Google Scholar 

  • D’Arcy A, Bergfors T, Cowan-Jacob SW, Marsh M (2014) Microseed matrix screening for optimization in protein crystallization: what have we learned. Acta Cryst F70:1117–1126

    Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, USA. http://www.pymol.org

  • Deng J, Feng EG, Ma S, Zhang Y, Liu XF, Li HL, Huang H, Zhu J, Zhu WL, Xu S, Miao LY, Liu H, Jiang HL, Li J (2011) Design and synthesis of small molecule RhoA inhibitors: a new promising therapy for cardiovascular diseases. J Med Chem 54:4508–4822

    Article  CAS  PubMed  Google Scholar 

  • Derewenda U, Oleksy A, Stevenson AS, Korczynska J, Dauter Z, Somlyo AP, Otlewski J, Somlyo AV, Derewenda ZS (2004) The crystal structure of RhoA in complex with the DH/PH fragment of PDZRhoGEF, an activator of the Ca(2+) sensitization pathway in smooth muscle. Structure 12:1955–1965

    Article  CAS  PubMed  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Cryst D66:486–501

    Google Scholar 

  • Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    Article  CAS  PubMed  Google Scholar 

  • Gamblin SJ, Smerdon SJ (1998) GTPase-activating proteins and their complexes. Curr Opin Struct Biol 8:195–201

    Article  CAS  PubMed  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9:690–701

    Article  CAS  PubMed  Google Scholar 

  • Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T (1998) Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem 273:9656–9666

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  • Kaibuchi K, Kuroda S, Amano M (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemicai quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Li DB, Yang GJ, Xu HW, Fu ZX, Wang SW, Hu SJ (2013) Regulation on RhoA in vascular smooth muscle cells under inflammatory stimulation proposes a novel mechanism mediating the multiple-beneficial action of acetylsalicylic acid. Inflammation 36:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Deng J, Li BL, Li XJ, Yan ZW, Zhu J, Chen G, Wang Z, Jiang HL, Miao LY, Li J (2015) Development of second-generation small-molecule RhoA inhibitors with enhanced water solubility, tissue potency, and significant in vivo efficacy. Chem Med Chem 10:193–206

    Article  CAS  PubMed  Google Scholar 

  • Madaule P, Axel R (1985) A novel ras-related gene family. Cell 41:31–40

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) Acta Cryst D67:355–367

    Google Scholar 

  • Narumiya S (1996) The small GTPase Rho: cellular functions and signal transduction. J Biochem 120:215–228

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Sasaki T, Tanaka K, Nakanishi H (1995) Rho as a regulator of the cytoskeleton. Trends Biochem Sci 20:227–231

    Article  CAS  PubMed  Google Scholar 

  • Vagin A, Teplyakov A (2010) Molecular replacement with MOLREP. Acta Cryst D66:22–25

    Google Scholar 

  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Acta Cryst D67:235–242

    Google Scholar 

  • Yin Y, Lin L, Ruiz C, Khan S, Cameron MD, Grant W, Pocas J, Eid N, Park H, Schroter T (2013) Synthesis and biological evaluation of urea derivatives as highly potent and selective rho kinase inhibitors. J Med Chem 56:3568–3581

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Deng J, Ma S, Xue L, Zhu J, Zhu WL, Jiang HL, Li J, Miao LY (2012) The effect of first-in-class small molecule RhoA inhibitor, HL07, on the phenylephrine-induced artery contraction. Curr Pharm Des 27:4258–4264

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 81202394, 21222211, 21372001 and 91313303), the Ministry of Education of China’s Program for New Century Excellent Talents in University (Grant No. NCET-12-0853), the Young Medical Talents Project of Jiangsu Province, and the Applied Basic Research Programs of Suzhou Sci-tech Bureau, China (Grant No. SYS201219).

Supporting information

Supplementary Table 1—Macromolecule production data for RhoA and PDZRhoGEF.

Supplementary Table 2—Crystallization information.

Supplementary Table 3—Data collection and processing.

Supplementary Table 4—Structure refinement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Liyan Miao.

Additional information

Zhaowei Yan and Sheng Ma have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Ma, S., Zhang, Y. et al. The structure of a small GTPaseRhoA in complex with PDZRhoGEF and the inhibitor HL47. Biotechnol Lett 39, 745–750 (2017). https://doi.org/10.1007/s10529-017-2292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2292-7

Keywords

Navigation