Skip to main content
Log in

Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and α-amylase genes from Debaryomyces occidentalis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Amylolytic industrial polyploid strains of Saccharomyces cerevisiae (ATCC 4126, ATCC 9763 and ATCC 24858) expressing a glucoamylase gene (GAM1) or an α-amylase gene (AMY) from Debaryomyces occidentalis were developed. The glucoamylase activity of S. cerevisiae ATCC 9763 expressing the GAM1 gene was 3.7-times higher than that of D. occidentalis. On the other hand, α-amylase activity in the corresponding strain expressing the D. occidentalis AMY gene increased 10-times relative to D. occidentalis. These two recombinant yeast strains expressing the GAM1 gene and AMY gene, respectively were cultured simultaneously to produce both glucoamylase and α-amylase for efficient one-step utilization of starch. Growth, substrate utilization and enzyme activity of these strains are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microbiol Technol 25:23–30

    Article  CAS  Google Scholar 

  • Dohmen RJ, Strasser AWM, Dahlems UM, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121

    Article  PubMed  CAS  Google Scholar 

  • Eksteen JM, van Renseburg P, Cordero Otero RR, Pretorius IS (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639–646

    Article  PubMed  CAS  Google Scholar 

  • Gietz D, St Jean A, Woods R, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  PubMed  CAS  Google Scholar 

  • Hashida-Okado T, Ogawa A, Endo M, Yasumoto R, Takesako K, Kato I (1996) AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet 251:236–244

    PubMed  CAS  Google Scholar 

  • Janse BJ, Pretorius IS (1995) One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing α-amylase, glucoamylase and pullulanase. Appl Microbiol Biotechnol 42:876–883

    Article  Google Scholar 

  • Kang NY, Park JN, Chin JE, Lee HB, Im SY, Bai S (2003) Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis α-amylase gene. Biotechnol Lett 25:1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Park CS, Mattoon JR (1988) High-efficiency, one-step utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse α-amylase. Appl Environ Microbiol 54:966–971

    PubMed  CAS  Google Scholar 

  • Kim HO, Park JN, Sohn HJ, Shin DJ, Choi C, Im SY, Lee HB, Chun SB, Bai S (2000) Cloning and expression in Saccharomyces cerevisiae of a β-amylase gene from the oomycete Saprolegnia ferax. Biotechnol Lett 22:1493–1498

    Article  CAS  Google Scholar 

  • Lee FWF, Da Silva NA (1997) Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:339–345

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Shin DJ, Cho NC, Kim HO, Shin SY, Im SY, Lee HB, Chun SB, Bai S (2000) Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22:387–392

    Article  CAS  Google Scholar 

  • Ma Y, Lin LL, Chien HR, Hsu WH (2000) Effcient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol Appl Biochem 31:55–59

    Article  PubMed  CAS  Google Scholar 

  • Marin D, Jimenez A, Lobato MF (2001) Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS microbiol Lett 201:249–253

    Article  PubMed  CAS  Google Scholar 

  • Ness F, Lavallee F, Dubourdieu D, Aigle M, Dulau L (1993) Identification of yeast strains using the polymerase chain reaction. J Sci Food Agric 62:89–94

    Article  CAS  Google Scholar 

  • Nieto A, Prieto JA, Sanz P (1999) Stable high-copy number integration of Aspergillus orizae α-amylase cDNA in an industrial baker’s yeast strain. Biotechnol Prog 15:459–466

    Article  PubMed  CAS  Google Scholar 

  • Park JN, Shin DJ, Kim HO, Kim DH, Lee HB, Chun SB, Bai S (1999) Expression of Schwanniomyces occidentalis α-amylase gene in Saccharomyces cerevisiae var. diastaticus. J Microbiol Biotechnol 9:668–671

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Steyn AJC, Pretorius IS (1991) Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens α-amylase-encoding gene in Saccharomyces cerevisiae. Gene 100:85–93

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Z, Da Silva NA (1996) G418 selection and stability of cloned genes integrated at chromosomal δ sequences of Saccharomyces cerevisiae. Biotechnol Bioeng 49:45–51

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Jimenez A (1996) Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS microbiol Lett 137:165–168

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki Y, Suzuki Y, Ozawa J (1977) Three forms of α-glucosidase and a glucoamylase from Aspergillus awamori. Agric Biol Chem 41:2149–2161

    CAS  Google Scholar 

  • Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by Chonnam National University in the Program, 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghang, DM., Yu, L., Lim, MH. et al. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and α-amylase genes from Debaryomyces occidentalis . Biotechnol Lett 29, 1203–1208 (2007). https://doi.org/10.1007/s10529-007-9371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9371-0

Keywords

Navigation