The Effect of Sialic Acid on the Expression of miR-218, NF-kB, MMP-9, and TIMP-1

Abstract

Sialic acid (N-acetylneuraminic acid, NANA) is found at all cell surfaces of vertebrates. Although it is widely accepted that sialic acid is an essential substrate for brain development via a significant role in nerve transfers, structure of glycosides, and synaptogenesis phenomena, there are some reports on the elevated levels of sialic acid and prevalence of neurodegeneration. Matrix metalloproteases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are involved in neuroinflammation disorders and produced by many cell types, including activated T cells, macrophages, neurons, astrocytes, and microglial cells. It can be hypothesized that sialic acid may have a potentially critical role in regulation of a wide range of uncovered neurodegeneration factors as its downstream targets. In this study, for the first time, we aimed to analyze the possible effect of the sialic acid solution exposure in the human C118 cell line, which was derived from a human brain astrocytoma (glial cells), on the expression patterns of miR-218, NF-kB, MMP-9, and TIMP-1. For MMP-9, protein levels were studied too. Half maximal inhibitory concentration (IC50) value of NANA was obtained by MTT assay. Glial cell line was treated with sialic acid (300, 500, and 1000 µg/ml) for 24 h to investigate the effects of this ligand on the expression of miR-218, NF-kB, MMP-9, and TIMP-1 genes. Protein levels were checked by Western blotting, and by using zymography, the gelatinolytic activity of MMP-9 secreted into conditioned media was assayed. At 300 µM, 500 µM, and 1000 µM sialic acid treatments, the expression of miR-218 was downregulated; subsequently, the NF-kB, MMP-9, and TIMP-1 genes as well as their protein expressions were upregulated. More interestingly, the enzyme activity of secreted MMP-9 was upregulated too (p-values ≤ 0.05). This study could demonstrate the significant effect of sialic acid on miR-218, NF-kB, MMP-9 , and TIMP-1 expressions in gene and protein levels and also the levels of enzyme activity of secreted MMP-9. Therefore, provided information indicates the novel idea of a possible linkage between sialic acid species and regulation of these neuroinflammation genes in Glial cell line.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AD:

Alzheimer disease

ALS:

Amyotrophic lateral sclerosis

CNS:

Central nervous system

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

IC50:

Half maximal inhibitory concentration

MMPs:

Matrix metalloproteases

MS:

Multiple sclerosis

NCAMs:

Neural cell adhesion molecules

NANA:

N-Acetylneuraminic acid

NF-κB:

Nuclear factor-kappa B

PD:

Parkinson disease

polySia or PSA:

Polysialic acid

TIMPs:

Tissue inhibitor of metalloproteinases

References

  1. Agarwal V, Bell GW, Nam J, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed Central  Google Scholar 

  2. Amin ND, Bai G, Klug JR et al (2015) Loss of motoneuron-specific microRNA-218 causes systemic neuromuscular failure. Science 80-(350):1525–1529. https://doi.org/10.1126/science.aad2509

    CAS  Article  Google Scholar 

  3. Bergman P, James T, Kular L et al (2013) Next-generation sequencing identifies microRNAs that associate with pathogenic autoimmune neuroinflammation in rats. J Immunol 190:4066–4075. https://doi.org/10.4049/jimmunol.1200728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bommarito A et al (2011) BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer 18:669–685. https://doi.org/10.1530/ERC-11-0076

    CAS  Article  PubMed  Google Scholar 

  5. Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10:S2–S9. https://doi.org/10.1038/nm1067

    CAS  Article  PubMed  Google Scholar 

  6. Brkic M, Balusu S, Libert C, Vandenbroucke RE (2015) Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm 2015:620581. https://doi.org/10.1155/2015/620581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Charles P, Hernandez MP, Stankoff B et al (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci USA 97:7585–7590. https://doi.org/10.1073/pnas.100076197

    CAS  Article  PubMed  Google Scholar 

  8. Charles P, Reynolds R, Seilhean D et al (2002) Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125:1972–1979. https://doi.org/10.1093/brain/awf216

    Article  PubMed  Google Scholar 

  9. Cheraghzadeh M, Azizidoost S, Nazeri Z et al (2018) The effect of sialic acid on viability and growth of mice astrocytes and human astroglia cells. J Isfahan Med Sch 36:264–269

    Google Scholar 

  10. Chou YC, Sheu JR, Chung CL, Chen CY, Lin FL, Hsu MJ, Kuo YH, Hsiao G (2010) Nuclear-targeted inhibition of NF-kappaB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chem Biol Interact 30(184):403–412. https://doi.org/10.1016/j.cbi.2010.01.010

    CAS  Article  Google Scholar 

  11. Dell'Agli M, Galli GV, Bosisio E, D'Ambrosio M (2009) Inhibition of NF-kB and metalloproteinase-9 expression and secretion by parthenolide derivatives. Bioorg Med Chem Lett 19:1858–1860. https://doi.org/10.1016/j.bmcl.2009.02.080

    CAS  Article  PubMed  Google Scholar 

  12. Grigoriadis N, Grigoriadis S, Polyzoidou E, Milonas I, Karussis D (2006) Neuroinflammation in multiple sclerosis: Evidence for autoimmune dysregulation, not simple autoimmune reaction. Clin Neurol Neurosurg 108(3):241–244

  13. Guan H, Wei G, Wu J et al (2013) Down-regulation of miR-218-2 and its host gene. J Clin Endocrinol Metab 98:1334–1344. https://doi.org/10.1210/jc.2013-1053

    CAS  Article  Google Scholar 

  14. Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130. https://doi.org/10.1016/j.jchemneu.2011.01.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Hoye ML, Regan MR, Jensen LA et al (2018) Motor neuron-derived microRNAs cause astrocyte dysfunction in amyotrophic lateral sclerosis. Brain 141:2561–2575. https://doi.org/10.1093/brain/awy182

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jones SV, Kounatidis I (2017) Nuclear factor-kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol 8

  17. Kaplan A, Spiller KJ, Towne C et al (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348. https://doi.org/10.1016/j.neuron.2013.12.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Khatua B, Roy S, Mandal C (2013) Sialic acids siglec interaction: a unique strategy to circumvent innate immune response by pathogens. Indian J Med Res 138:648–662

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim SY, Kim DH, Han SJ et al (2007) Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells. Biochem Pharmacol 74:1642–1651. https://doi.org/10.1016/j.bcp.2007.08.015

    CAS  Article  PubMed  Google Scholar 

  20. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. https://doi.org/10.1038/nrm2632

    CAS  Article  PubMed  Google Scholar 

  21. Leibowitz SM, Yan Y (2016) NF-κB pathways in the pathogenesis of multiple sclerosis and the therapeutic implications. Front Mol Neurosci 9

  22. Ma X, Zhou J, Zhong Y et al (2014) Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11:810–818. https://doi.org/10.7150/ijms.8647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Maes O, Chertkow H, Wang E, Schipper H (2009) MicroRNA: implications for Alzheimer disease and other human CNS disorders. Curr Genomics 10:154–168. https://doi.org/10.2174/138920209788185252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Marie-Françoise (2000) Molecular mechanisms of neurodegenerative diseases. Brain 124(7):1467–1468. https://doi.org/10.1093/brain/124.7.1467

    Article  Google Scholar 

  25. Miranda KC et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217. https://doi.org/10.1016/j.cell.2006.07.031

    CAS  Article  PubMed  Google Scholar 

  26. Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354. https://doi.org/10.1016/j.neurobiolaging.2004.05.010

    CAS  Article  PubMed  Google Scholar 

  27. Muir EM, Adcock KH, Morgenstern DA et al (2002) Matrix metalloproteases and their inhibitors are produced by overlapping populations of activated astrocytes. Brain Res Mol Brain Res 100:103–117. https://doi.org/10.1016/S0169-328X(02)00132-8

    CAS  Article  PubMed  Google Scholar 

  28. Noorbakhsh F, Ellestad KK, Maingat F et al (2011) Impaired neurosteroid synthesis in multiple sclerosis. Brain 134:2703–2721. https://doi.org/10.1093/brain/awr200

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nunez-Iglesias J, Liu CC, Morgan TE et al (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS ONE. https://doi.org/10.1371/journal.pone.0008898

    Article  PubMed  PubMed Central  Google Scholar 

  30. Olsen M, Zuber C, Roth J et al (1995) The ability to re-express polysialylated NCAM in soleus muscle after denervation is reduced in aged rats compared to young adult rats. Int J Dev Neurosci 13:97–104. https://doi.org/10.1016/0736-5748(95)00003-Y

    CAS  Article  PubMed  Google Scholar 

  31. Ouali Alami N, Schurr C, Heuvel FO, Tang L, Li Q, Tasdogan A, Kimbara A, Nettekoven M, Ottaviani G, Raposo C, Röver S, Rogers‐Evans M, Rothenhäusler B, Ullmer C, Fingerle J, Grether U, Knuesel I, Boeckers TM, Ludolph A, Wirth T, Roselli F, Baumann (2018) NF‐κB activation in astrocytes drives a stage‐specific beneficial neuroimmunological response in ALS. The EMBO Journal 37(16)

  32. Pillai S, Netravali IA, Cariappa A, Mattoo H (2012) Siglecs and immune regulation. Annu Rev Immunol 30:357–392. https://doi.org/10.1146/annurev-immunol-020711-075018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517. https://doi.org/10.1261/rna.5248604

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Rhee JW, Lee KW, Kim D, Lee Y, Jeon OH, Kwon HJ, Kim DS (2007) NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J Biochem Mol Biol 40:88–94. https://doi.org/10.5483/bmbrep.2007.40.1.088

    CAS  Article  PubMed  Google Scholar 

  35. Sbardella D, Fasciglione GF, Gioia M et al (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 33:119–208. https://doi.org/10.1016/j.mam.2011.10.015

    CAS  Article  PubMed  Google Scholar 

  36. Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19:507–514. https://doi.org/10.1016/j.sbi.2009.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Schnaar RL, Gerardy-Schahn R, Hildebrandt H (2014) Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 94:461–518. https://doi.org/10.1152/physrev.00033.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:1–8. https://doi.org/10.3389/fnmol.2015.00077

    CAS  Article  Google Scholar 

  39. Song L, Huang Q, Chen K et al (2010) miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-β. Biochem Biophys Res Commun 402:135–140. https://doi.org/10.1016/j.bbrc.2010.10.003

    CAS  Article  PubMed  Google Scholar 

  40. Sun J (2010) Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. J Signal Transduct 2010:1–7

  41. Varki A (2008) Sialic acids in human health and disease. Trends Mol Med 14:351–360. https://doi.org/10.1016/j.molmed.2008.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Walker FR, Beynon SB, Jones KA et al (2014) Dynamic structural remodelling of microglia in health and disease: a review of the models, the signals and the mechanisms. Brain Behav Immunol 37:1–14. https://doi.org/10.1016/j.bbi.2013.12.010

    CAS  Article  Google Scholar 

  43. Wang C, Ji B, Cheng B et al (2014) Neuroprotection of microRNA in neurological disorders (Review). Biomed Rep 2:611–619. https://doi.org/10.3892/br.2014.297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Wielgat P, Braszko JJ (2012a) Significance of the cell adhesion molecules and sialic acid in neurodegeneration. Adv Med Sci 57:23–30. https://doi.org/10.2478/v10039-012-0011-0

    CAS  Article  PubMed  Google Scholar 

  45. Wielgat P, Braszko JJ (2012b) The participation of sialic acids in microglia–neuron interactions. Cell Immunol 273:17–22. https://doi.org/10.1016/j.cellimm.2011.12.002

    CAS  Article  PubMed  Google Scholar 

  46. Wilczynska KM, Gopalan SM, Bugno M, Kasza A, Konik BS, Bryan L, Wright S, Griswold-Prenner I, Kordula T (2006) A novel mechanism of tissue inhibitor of metalloproteinases-1 activation by interleukin-1 in primary human astrocytes. J Biol Chem 281(46):34955–34964. https://doi.org/10.1074/jbc.M604616200

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Master's thesis grant (code: 96/3/02/16670) from Shahid Chamran University of Ahvaz. The authors would like to thank all the participants for taking part in this study and specially Dr. Maryam Cheraghzadeh, Ms. Tahereh Seifi, and Mr. Saleh Zahraei for supporting this project. The authors wish to appreciate Department of Clinical Biochemistry of Jundishapur University of Medical Science. Also they would like to appreciate Dr. Leila Heidarvand for comments and suggestions on manuscript improvement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shafiei.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shabani Sadr, N.K., Shafiei, M., Galehdari, H. et al. The Effect of Sialic Acid on the Expression of miR-218, NF-kB, MMP-9, and TIMP-1. Biochem Genet (2020). https://doi.org/10.1007/s10528-020-09981-y

Download citation

Keywords

  • Metalloproteinases
  • MMP-9
  • TIMP-1
  • miR-218
  • NF-kB
  • Gelatin zymography
  • Western blot
  • N-acetylneuraminicacid
  • Neurodegenerative disorders