Skip to main content
Log in

Effects of Some Growth Factors and Cytokines on the Expression of the Repair Enzyme MGMT and Protein MARP in Human Cells In Vitro

Effect of Some Growth Factors and Cytokines

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The inducible repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) eliminates O6-methylguanine adducts in DNA and protects the cells from damaging effects of alkylating agents. We have found that anti-MGMT antibodies recognize both the MGMT protein with a mol. weight ~ 24 kDa and a protein with a mol. weight ~ 48 kDa, which was named MARP (anti-methyltransferase antibody recognizable protein). A number of growth factors and cytokines were shown to regulate the expression of MGMT and MARP proteins. The ranges of concentrations of several growth factors and cytokines that caused increasing or decreasing protein amounts in human cell cultures were determined. The results of special biological experiments have allowed us to assume a possible role of MARP in the repair of alkyl adducts in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akopyan HR, Huleyuk NL, Kushniruk VO et al (2013) Comparative analysis of the karyotype of new human cell line 4BL at long-term cultivation: ploidy of the chromosomal set. Cytol Genet 47:305–317. https://doi.org/10.3103/s0095452713050022

    Article  Google Scholar 

  • Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Briegert M, Enk AH, Kaina B (2007) Change in expression of MGMT during maturation of human monocytes into dendritic cells. DNA Repair 6:1255–1263

    Article  CAS  Google Scholar 

  • Buschfort-Papewalis C, Mortiz T, Liedert B, Thomale J (2002) Down-regulation of DNA repair in human CD34+ progenitor cells corresponds to increased drug sensitivity and apoptotic response. Blood 100:845–853

    Article  CAS  Google Scholar 

  • Cabrini G, Fabbri E, Lo Nigro C et al (2015) Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (review). Int J Oncol 47:417–428. https://doi.org/10.3892/ijo.2015.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL (2001) Identification of novel cytokine-induced genes in pancreatic b-cells by high-density oligonucleotide arrays. Diabetes 50:909–920

    Article  CAS  Google Scholar 

  • Christmann M, Verbeek B, Roos WP, Kaina B (2011) O6-methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta Rev Cancer 1816:179–190. https://doi.org/10.1016/j.bbcan.2011.06.002

    Article  CAS  Google Scholar 

  • Debili N, Masse J, Katz A et al (1993) Effects of the recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood 82:84–95

    CAS  PubMed  Google Scholar 

  • Eaton SL, Roche SL, Hurtado L, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart TM (2013) Total protein analysis as a reliable loading control for quantitative fluorescent western blotting. PLoS ONE. https://doi.org/10.1371/journal.pone.0072457

    Article  PubMed  PubMed Central  Google Scholar 

  • Frosina G, Laval F (1987) The O6-methylguanine-DNA-methyltransferase activity of rat hepatoma cells is increased after a single exposure to alkylating agents. Carcinogenesis 8:91–95

    Article  CAS  Google Scholar 

  • Gerson SL (2014) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307

    Article  Google Scholar 

  • Gerson SL, Phillips W, Kastan M et al (1996) Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU. Blood 88:1649–1655

    CAS  PubMed  Google Scholar 

  • Hermant B, Gudrun A, Potopalsky AI, Chroboczek J, Tcherniuk SO (2013) Amitozyn impairs chromosome segregation and induces apoptosis via mitotic checkpoint activation. PLoS ONE 8(3):e57461. https://doi.org/10.1371/journal.pone.0057461

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K, Shyam K, Penketh PG, Baumann RP, Sartorelli AC, Rutherford TJ, Ratner ES (2013) Expression of O6-methylguanine-DNA methyltransferase examined by alkyl-transfer assays, methylation-specific PCR and western blots in tumors and matched normal tissue. J Cancer Ther 4:919–931

    Article  Google Scholar 

  • Ivakhno SS, Kornelyuk AI (2004) Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp Oncol 26:250–255

    CAS  PubMed  Google Scholar 

  • Jiang XB, Hu B, He DS, Mao ZG, Wang X, Song BB, Zhu YH, Wang HJ (2015) Expression profiling of O6-methylguanine-DNA-methyltransferase in prolactinomas: a correlative study of promoter methylation and pathological features in 136 cases. BMC Cancer. https://doi.org/10.1186/s12885-015-1595-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaina B, Fritz G, Ochs K, Haas S, Grombacher T, Dosch J, Christmann M, Lund P, Gregel CM, Becker K (1998) Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds and defense mechanisms. Mutat Res 405:179–191

    Article  CAS  Google Scholar 

  • Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6:1079–1099

    Article  CAS  Google Scholar 

  • Klapacz J, Pottenger LH, Engelward BP et al (2016) Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents. Mutat Res Rev Mutat Res 767:77–91. https://doi.org/10.1016/j.mrrev.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka S, Tanak S (2013) Chemotherapeutic agent for glioma. In: Clinical management and evolving novel therapeutic strategies for patients with brain tumors, vol 19. InTech, p 415–438. https://doi.org/10.5772/45956

    Google Scholar 

  • Kotsarenko KV, Lylo VV, Macewicz LL, Ruban TP, Luchakivska YuS, Kuchuk MV, Lukash LL (2014) Influence of some biologically active substances on amount of MGMT and MARP proteins in human cells in vitro. Biopolym Cell 30:203–208

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Latypov VF, Tubbs JL, Watson AJ, Marriott AS, McGown G, Thorn-croft M, Wilkinson OJ, Senthong P, Butt A, Arvai AS, Millington CL, Povey AC, Williams DM, Santibanez-Koref MF, Tainer JA, Margison GP (2012) Atl1regulates choice between global genome and transcription-coupled repair of O(6)-alkylguanines. Mol Cell 47:50–60

    Article  CAS  Google Scholar 

  • Lavon I, Fuchs D, Zrihan D, Efroni G, Zelikovitch B, Fellig Y, Siegal T (2007) Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res 67:8952–8959

    Article  CAS  Google Scholar 

  • Lefebvre P, Laval F (1989) Potentiation of N-methyl-N′-nitro-N-nitrosoguanidine-induced O6-methylguanine-DNA-methyltransferase activity in a rat hepatoma cell line by poly (ADP-ribose) synthesis inhibitors. Biochem Biophys Res Commun 163:599–604

    Article  CAS  Google Scholar 

  • Lefebvre P, Zak P, Laval F (1993) Induction of O6-methylguanine-DNA-methyltransferase and N3-methyladenine-DNA-glycosylase in human cells exposed to DNA-damaging agents. DNA Cell Biol 12:233–241

    Article  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  CAS  Google Scholar 

  • Lukash LL, Boldt J, Pegg AE, Dolan ME, Maher VM, McCormic JJ (1991) Effect of O6-alkylguanine-DNA alkyltransferase on the frequency and spectrum of mutations induced by N-methyl-N′-nitro-N-nitrosoguanidine in the HPRT gene of diploid human fibroblasts. Mutat Res 250:397–409

    Article  CAS  Google Scholar 

  • Lylo VV, Macewicz LL, Kotsarenko KV, Babenko LA, Kornelyuk AI, Sukhorada EM, Lukash LL (2011) Activation of gene expression of the O6-methylguanine-DNA transferase repair enzyme upon the influence of EMAP II cytokine in human cells in vitro. Cytol Genet 45:373–378

    Article  Google Scholar 

  • Lylo VV, Karpova IS, Kotsarenko KV, Macewicz LL, Ruban TO, Lukash LL (2015) Lectins of Sambucus nigra in regulation of cellular DNA-protective mechanisms. Acta Hortic 1061:103–108

    Article  Google Scholar 

  • Macewicz LL, Kushniruk VO, Iatsyshyna AP, Kotsarenko KV, Lylo VV, Akopyan GR, Huleuk NL, Mykytenko DO, Lukash LL (2013) Correlation of mutagenesis level with expression of reparative enzyme O6-methylguanine-DNA methyltransferase during establishment of cell lines in vitro. Biopolym Cell 29:480–486

    Article  CAS  Google Scholar 

  • McDonald K, Tabone T, Nowak A, Erber W (2015) Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation. Oncol Lett. https://doi.org/10.3892/ol.2015.2980

    Article  PubMed  PubMed Central  Google Scholar 

  • Motomura K, Natsume A, Kishida Y, Higashi H, Kondo Y, Nakasu Y, Abe T, Namba H, Wakai K, Wakabayashi T (2011) Benefits of interferon-b and temozolomide combination therapy for newly diagnosed primary glioblastoma with the unmethylated MGMT promoter. Cancer 117:1721–1730

    Article  CAS  Google Scholar 

  • Natsume A, Ishii D, Wakabayashi T et al (2005) IFN-β down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res 65:7573–7579

    Article  CAS  Google Scholar 

  • Olson JJ, McKenzie E, Skurski-Martin M, Zhang Z, Brat D, Phuphanich S (2008) Phase I analysis of BCNU-impregnated biodegradable polymer wafers followed by systemic interferon alfa-2b in adults with recurrent glioblastoma multiforme. J Neurooncol 90:293–299

    Article  CAS  Google Scholar 

  • Park H, Park SG, Kim J, Ko YG, Kim S (2002) Signaling pathways for TNF production induced by human aminoacyl-tRNA synthetase-associating factor, p43. Cytokine 20:148–153

    Article  CAS  Google Scholar 

  • Park J-A, Joe Y-A, Kim T-G, Hong Y-K (2006) Potentiation of antiglioma effect with combined temozolomide and interferon-β. Oncol Rep. https://doi.org/10.3892/or.16.6.1253

    Article  PubMed  Google Scholar 

  • Pegg AE (2000) Repair of O6-alkylguanine by alkyltransferases. Mutat Res 462:83–100

    Article  CAS  Google Scholar 

  • Pegg AE (2011) Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 24:618–639

    Article  CAS  Google Scholar 

  • Reznikov AG, Chaykovskaya LV, Polyakova LI et al (2011) Cooperative antitumor effect of endothelial-monocyte activating polypeptide II and flutamide on human prostate cancer xenografts. Exp Oncol 33:231–234

    CAS  PubMed  Google Scholar 

  • Shen D, Guo C-C, Wang J et al (2015) Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells. Oncol Rep. https://doi.org/10.3892/or.2015.4232

    Article  PubMed  Google Scholar 

  • Stepanenko A, Andreieva S, Korets K, Mykytenko D, Baklaushev V, Huleyuk N, Kovalova O, Kotsarenko K, Chekhonin V, Vassetzky Y, Avdieiev S, Dmitrenko V (2016) Temozolomide promotes genomic and phenotypic changes in glioblastoma cells. Cancer Cell Int. https://doi.org/10.1186/s12935-016-0311-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Thacker JS, Yeung DH, Staines WR, Mielke JG (2016) Total protein, or high abundance protein: which offers the best loading control for western blotting? Anal Biochem 496:76–78

    Article  CAS  Google Scholar 

  • Thomas AD, Jenkins GJS, Kaina B, Bodger OG, Tomaszowski KH, Lewis PD, Doak SH, Johnson GE (2013) Influence of DNA repair on nonlinear dose–responses for mutation. Toxicol Sci 132:87–95

    Article  CAS  Google Scholar 

  • Thomas AD, Fahrer J, Johnson GE, Kaina B (2015) Theoretical considerations for thresholds in chemical carcinogenesis. Mutat Res Rev Mutat Res 765:56–67

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  • Tomaszowski KH, Aasland D, Margison GP, Williams E, Pinder SI, Modesti M, Fuchs RP, Kaina B (2015) The bacterial alkyltransferase-like (eATL) protein protects mammalian cells against methylating agent-induced toxicity. DNA Repair 28:14–20

    Article  CAS  Google Scholar 

  • Wang Y, Li J, Tohti M, Hu Y, Wang S, Li W, Lu Z, Ma C (2014) The expression profile of Dopamine D2 receptor, MGMT and VEGF in different histological subtypes of pituitary adenomas: a study of 197 cases and indications for the medical therapy. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-014-0056-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jia L, Jin X et al (2015) NF-κB inhibitor reverses temozolomide resistance in human glioma TR/U251 cells. Oncol Lett 9:2586–2590. https://doi.org/10.3892/ol.2015.3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Bocangel D, Ramesh R, Ekmekcioglu S, Poindexter N, Grimm EA, Chada S (2008) Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther 7:3842–3851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Professors Korneluyk A.I., Kuchuk M.V., Drs. Chernykh S.I., Potopalsky A.I., and Luchakovskaya Yu.S. for providing the preparations of cytokines and alkylating agent.

Funding

The study was supported by the National Academy of Sciences of Ukraine (No. 0115U000355) and the Czech Research Infrastructure for Systems Biology C4SYS (Project No. LM2015055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna Kotsarenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsarenko, K., Lylo, V., Ruban, T. et al. Effects of Some Growth Factors and Cytokines on the Expression of the Repair Enzyme MGMT and Protein MARP in Human Cells In Vitro. Biochem Genet 56, 459–477 (2018). https://doi.org/10.1007/s10528-018-9854-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9854-9

Keywords

Navigation