Skip to main content
Log in

Molecular Profiling of Genetic Variability in Domesticated Groundnut (Arachis hypogaea L.) Based on ISJ, URP, and DAMD Markers

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

To detect DNA polymorphisms in the peanut, we screened 26 polymorphic primers using intron–exon splice junction (ISJ), universal rice primer (URP), and directed amplification of minisatellite region DNA (DAMD) techniques. Amplification of genomic DNA of 16 peanut accessions yielded 121 ISJ, 50 URP, and 25 DAMD fragments, of which 34, 25 and 16 were polymorphic, respectively. The range of polymorphism was 10.0–62.5%, averaging 27.7%, for ISJ; 20–80%, averaging 49.5%, for URP; and 28.6–50.0%, averaging 36.3%, for DAMD. In comparisons of multiplex ratio, average polymorphism information content, and marker index, the URP markers were relatively more efficient than ISJ and DAMD markers. Clustering results remained more or less the same with ISJ and URP markers. To the best of our knowledge, this is the first report on the study of the genetic diversity of the peanut using ISJ, URP, and DAMD markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bebeli PJ, Zhou Z, Somers DJ, Gustafson JP (1997) PCR primed with minisatellite core sequences yields DNA fingerprinting probes in wheat. Theor Appl Genet 95:276–283

    Article  CAS  Google Scholar 

  • Dikshit HK, Jhang T, Singh NK, Koundal KR, Bansal KC, Chandra N, Tickoo JL, Sharma TR (2007) Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol Plantarum 51(3):451–457

    Article  CAS  Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108(6):1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Gaweł M, Wiśniewska I, Rafalski A (2002) Semi-specific PCR for the evaluation of diversity among cultivars of wheat and triticale. Cell Mol Biol Lett 7:577–582

    PubMed  Google Scholar 

  • Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325

    Article  PubMed  CAS  Google Scholar 

  • Han ZQ, Gao GQ, Wei PX, Tang RH, Zhong RC (2004) Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agron Sin 30(11):1097–1101

    CAS  Google Scholar 

  • He GH, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97(2):143–149

    Article  CAS  Google Scholar 

  • He GH, Prakash CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Ev 48(4):347–352

    Article  Google Scholar 

  • Heath DD, Iwama GK, Devlin RH (1993) PCR primed with VNTR core sequence yields species specific patterns and hypervariable probes. Nucleic Acids Res 21:5782–5785

    Article  PubMed  CAS  Google Scholar 

  • Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327

    Article  CAS  Google Scholar 

  • Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39(4):1243–1247

    Article  CAS  Google Scholar 

  • Hu JB, Li JW, Wang LJ, Liu LJ, Si SW (2011) Utilization of a set of high-polymorphism DAMD markers for genetic analysis of a cucumber germplasm collection. Acta Physiol Plant 33:227–231

    Article  Google Scholar 

  • Ince AG, Karaca M (2011) Genetic variation in common bean landraces efficiently revealed by Td-DAMD-PCR markers. Plant Omics 4(4):220–227

    CAS  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Individual specific ‘fingerprints’ of human DNA. Nature 332:278–281

    Article  Google Scholar 

  • Jiang HF, Liao BS, Ren XP, Lei Y, Emma M, Fu TD, Crouch JH (2007) Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genomics 34(6):544–554

    Article  PubMed  CAS  Google Scholar 

  • Kang HW, Park DS, Park YJ, You CH, Lee BM, Eun MY, Go SJ (2001) Genomic differentiation among oyster mushroom (Pleurotus spp.) cultivars released in Korea by URP-PCR fingerprinting. Mycobiology 29:85–89

    CAS  Google Scholar 

  • Kang HW, Park DS, Go SJ, Eun MY (2002) Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Mol Cells 13:281–287

    PubMed  CAS  Google Scholar 

  • Karaca M, Ince AG (2008) Minisatellites as DNA markers to classify bermudagrasses (Cynodon spp.): confirmation of minisatellite in amplified products. J Genet 87:83–86

    Article  PubMed  CAS  Google Scholar 

  • Karaca M, Saha S, Zipf A, Jenkins JN, Lang DJ (2002) Genetic diversity among forage bermudagrass (Cynodon spp.): evidence from chloroplast and nuclear DNA fingerprinting. Crop Sci 42:2118–2127

    Article  CAS  Google Scholar 

  • Kochert G, Stalker HM, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origins and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83(10):1282–1291

    Article  CAS  Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40

    Article  PubMed  Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wol R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rafalski A, Wisniewska I, Gawel M (1998) PCR-based system for evaluation of genetic relationship among inbred lines of maize and rye. J Appl Genet 39A:90

    Google Scholar 

  • Rafalski A, Madej L, Wiśniewska I, Gaweł M (2002) The genetic diversity of components of rye hybrids. Cell Mol Biol Lett 7:471–475

    PubMed  CAS  Google Scholar 

  • Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44(5):763–772

    PubMed  CAS  Google Scholar 

  • Sawicki J, Szczecinska M (2011) A comparison of PCR-based markers for molecular identification of Sphagnum species of the section Acutifolia. Acta Soc Bot Pol 80(3):185–192

    Article  CAS  Google Scholar 

  • Sawicki J, Plasek V, Szczecinska M (2012) Molecular data do not support the current division of Orthotrichum (Bryophyta) species with immersed stomata. J Syst Evol 50(1):12–24

    Article  Google Scholar 

  • Souframanien J, Gopalakrishna T (2004) A comparative analysis of genetic diversity in black gram genotypes using RAPD and ISSR markers. Theor Appl Genet 109:1687–1693

    Article  PubMed  CAS  Google Scholar 

  • Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43(4):656–660

    Article  PubMed  CAS  Google Scholar 

  • Tang RH, Gao GQ, He LQ, Han ZQ, Shan SH, Zhong RC, Zhou CQ, Jiang J, Li YR, Zhuang WJ (2007) Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics 34(5):449–459

    Article  PubMed  CAS  Google Scholar 

  • Tang RH, Zhuang WJ, Gao GQ, He LQ, Han ZQ, Shan SH, Jiang J, Li YR (2008) Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agr Sci China 7(4):405–414

    Article  CAS  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis from Brazil, Paraguay, and Bolivia. Bonplandia 14:35–64

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  PubMed  CAS  Google Scholar 

  • Vassaet G, Georges M, Monsieur M, Brocas H, Lequarre AS, Christophe D (1987) A sequence of M13 phage detect hypervariable minisatellites in human and animal DNA. Science 235:683–684

    Article  Google Scholar 

  • Vergnaud G (1989) Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res 17:7623–7630

    Article  PubMed  CAS  Google Scholar 

  • Weining S, Langridge P (1991) Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor Appl Genet 82:209–216

    Article  CAS  Google Scholar 

  • Xiong FQ, Zhong RC, Han ZQ, Jiang J, He LQ, Zhuang WJ, Tang RH (2011a) Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep 38:3487–3494

    Article  PubMed  CAS  Google Scholar 

  • Xiong FQ, Jiang J, Han ZQ, Zhong RC, He LQ, Zhuang WJ, Tang RH (2011b) Molecular characterization of high plant species using PCR with primers designed from consensus branch point signal sequences. Biochem Genet 49:352–363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (31240059, 31160294), earmarked fund for Modern Agro-industry Technology Research System (2009BADA8B03), Guangxi Science and Technology Project (GKG1222009-2C, GKG10100004-7), Guangxi Science Fund (2011GXNSFA018079, 2012GXNSFBA053051), Guangxi Key Laboratory Construction Project (12-071-09), Guangxi Academy of Agricultural Sciences Fund (GNK2013JQ05, GNK2013JQ03, GNK2011YZ09, GNK2012YM22, GNK2012YZ03, GNK2012JM15), and Open Project Program of State Key Laboratory of Food Science and Technology, Nanchang University (SKLF-KF-201209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faqian Xiong or Ronghua Tang.

Additional information

Faqian Xiong and Junxian Liu have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, F., Liu, J., Jiang, J. et al. Molecular Profiling of Genetic Variability in Domesticated Groundnut (Arachis hypogaea L.) Based on ISJ, URP, and DAMD Markers. Biochem Genet 51, 889–900 (2013). https://doi.org/10.1007/s10528-013-9615-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-013-9615-8

Keywords

Navigation