Clutter Filtering for Diagnostic Ultrasound Color Flow Imaging

Clutter filtering plays an important role in constructing a quality color flow map in ultrasound Doppler imaging. Signals from slow-moving tissues and vessel walls are clutter as they often mix with reflections from blood and should be suppressed for the further correct estimation of flow parameters. Their complete suppression in color flow imaging is difficult, because these signals on average are 40-60 dB more powerful than the signals from blood, the length of the Doppler sequence is very short, and there is always a demand for a real-time operation. This article provides a general model of the Doppler signal and discusses filters based on polynomial and adaptive regression, empirical mode decomposition, and prospective combined approaches to blood flow filtering.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Song, P., Manduca, A., Trzasko, J. D., and Chen, S., “Ultrasound small vessel imaging with block-wise adaptive local clutter filtering,” IEEE Trans. Med. Imag., 36, No. 1, 251-262 (2017).

    Article  Google Scholar 

  2. 2.

    Li, Y. L., Hyun, D., Abou-Elkacem, L., Willmann, J. K., and Dahl, J. J., “Visualization of small-diameter vessels by reduction of incoherent reverberation with coherent flow power Doppler,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 63, No. 11, 1878-1889 (2016).

    Article  Google Scholar 

  3. 3.

    Yu, A. C. H., Johnston, K. W., and Cobbold, R., S. C., “Frequency-based signal processing for ultrasound color flow imaging,” Canad. Acoust., 35, No. 2, 11-23 (2007).

  4. 4.

    Shen, Z., Feng, N., Shen, Y., and Lee, C. H., “An improved para-metric relaxation approach to blood flow signal estimation with single-ensemble in color flow imaging,” J. Med. Biomed. Eng., 33, No. 3, 309-318 (2013).

    Google Scholar 

  5. 5.

    Torp, H., “Clutter rejection filters in color flow imaging: A theoretical approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 44, No. 2, 417-323 (1997).

    Article  Google Scholar 

  6. 6.

    Yu, A. C. H. and Lovstakken, L., “Eigen-based clutter filter design for ultrasound color flow imaging: A review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., No. 5, 1096 (2010).

  7. 7.

    Yu, A. C. H. and Cobbold, R. S. C., “Single-ensemble-based Eigen-processing methods for color flow imaging – Part, I., The Hankel-SVD Filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., No. 3, 559-572 (2008).

  8. 8.

    Yoo, Y. M., Managuli, R., and Kim, Y., “Adaptive clutter filtering for ultrasound color flow imaging,” Ultrasound Med. Biol., 29, No. 9, 1311-1320 (2003).

    Article  Google Scholar 

  9. 9.

    Wang, P. D., Shen, Y., and Feng, N. Z., “A novel clutter rejection scheme in color flow imaging,” Ultrasonics, No. 44, Supplement 1, e303-e305 (2006).

  10. 10.

    Bjærum, S. and Torp, H., “Statistical evaluation of clutter filters in color flow imaging,” Ultrasonics, No. 38, 376-380 (2000).

  11. 11.

    Kargel, C., Höbenreich, G., Trummer, B., and Insana, M. F., “Adaptive clutter rejection filtering in ultrasonic strain-flow imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 50, No. 7, 824-835 (2003).

    Article  Google Scholar 

  12. 12.

    Chee, A. J. and Alfred, C. H., “Receiver operating characteristic analysis of eigen-based clutter filters for ultrasound color flow imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 65, No. 3, 390-399 (2017).

    Article  Google Scholar 

  13. 13.

    Chee, A. J., Yiu, B. Y., and Alfred, C. H., “A GPU-parallelized eigen-based clutter filter framework for ultrasound color flow imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 64, No. 1, 150-163 (2017).

    Article  Google Scholar 

  14. 14.

    Lovstakken, L., Signal Processing in Diagnostic Ultrasound: Algorithms for Real-Time Estimation and Visualization of Blood Flow Velocity, Doctoral Thesis, Norwegian University of Science and Technology (2007).

  15. 15.

    Shen, Z., Feng, N., and Shen, Y., “A forward-backward subsequence smoothing eigen-based approach to designing clutter rejection filters in color flow imaging,” IEEE Proc., 43, 535-538 (2014).

    Google Scholar 

  16. 16.

    Park, G., Kim, Y., Shim, H., Koh, H. W., Lim, H., Lee, J. J., Yeo, S., Song, T. K., and Yoo, Y., “New adaptive clutter rejection based on spectral decomposition and tissue acceleration for ultrasound color Doppler imaging,” IEEE Ultrason. Symp., 1484-1487 (2014).

  17. 17.

    Park, G., Yeo, S., Lee, J. J., Yoon, C., Koh, H., Lim, H., Kim, Y., Shim, H., and Yoo, Y., “New adaptive clutter rejection based on spectral analysis for ultrasound color Doppler imaging: Phantom and in vivo abdominal study,” IEEE Trans. Biomed. Eng., 61, No. 1, 55-63 (2014).

    Article  Google Scholar 

  18. 18.

    Kadi, A. and Loupas, T., “On the performance of regression and step-initialized IIR Clutter filters for color Doppler systems in diagnosing medical ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 42, No. 5, 927-937 (1995).

    Article  Google Scholar 

  19. 19.

    Khan, I. A., Hamid, E., and Nakai, T., “Systolic phase detection from pulsed Doppler ultrasound signal using EMD_DHT based approach,” Int. j. Signal Proc. Image. Proc. Pattern Recogn., 7, No. 5, 207-216 (2014).

    Google Scholar 

  20. 20.

    Lo, M. T., Hu, K., Peng, C. K., and Novak, V., “Multimodal pressure flow analysis: application of Hilbert Huang transform in cerebral blood flow regulation,” EURASIP J., Adv. Signal Process., Article id: 785243 (2008).

  21. 21.

    Boronoev, B. B. and Omnokov, V. D., “Empirical mode decomposition of pulsed signals. Ground cover probing with radar and synthetic aperture radiometers,” MNTK (2013); http://ipms.bsc-net.ru/conferenc/RS2013/ru/docs/papers/a04.pdf.

  22. 22.

    Davydov, A. V., “The Hilbert-Huang transform,” http://geoin.org/hht (date accessed: June 1, 2018).

  23. 23.

    Shen, Z. and Lee, C. H., “LASSO based ensemble empirical mode decomposition approach to designing adaptive clutter suppression filters,” Proc. IEEE Acoust. Speech Signal Proc. (ICASSP), 757-760 (2012).

  24. 24.

    Gao, L., Zhang, Y., Lin, W., Li, H., Zhou, Y., Zhang, K., Li, Z., and Zhang, J., “A novel quadrature clutter rejection approach based on the multivariate empirical mode decomposition for bidirectional Doppler ultrasound signals,” Biomed. Signal Proc. Contr., 13, 31-40 (2014).

    Article  Google Scholar 

  25. 25.

    Shen, Z., Feng, N., Shen, Y., and Lee, C. H., “A ridge ensemble empirical mode decomposition approach to clutter rejection for ultrasound color flow imaging,” IEEE Trans. Biomed. Eng., 60, No. 6, 1477-1487 (2013).

    Article  Google Scholar 

  26. 26.

    Torres, S., Ground Clutter Cancelling with a Regression Filter, National Severe Storms Lab. Interim Report, Oklahoma, October 1998.

  27. 27.

    Zhou, X., Zhang, C., and Liu, D. C., “Adaptive clutter filter in 2D color flow imaging based on in vivo I/Q signal,” Biomed. Mater. Eng., 24, No. 1, 307-313 (2014).

    Google Scholar 

  28. 28.

    Gerbands, J. J., “On the relationships between SVD, KLT and PCA,” Pattern Recognition, No. 14, 375-381 (1981).

  29. 29.

    Zobly, A. M. S. and Kadah, Y. M., “A new clutter rejection technique for Doppler ultrasound signal based on principal and independent component analyses,” in: Cairo International Biomedical Engineering Conference (CIBEC) (2012), pp. 56-59.

  30. 30.

    Baranger, J., Arnal, B., Perren, F., Baud, O., Tanter, M., and Demené, C., “Adaptive spatiotemporal SVD clutter filtering for Ultrafast Doppler Imaging using similarity of spatial singular vectors,” IEEE Trans. Med. Imaging, No. 37, 1574-1586 (2018).

  31. 31.

    Osipov, L. V., Kulberg, N. S., Leonov, D. V., and Morozov, S. P., “3D Ultrasound: Current State, Emerging Trends and Technologies,” Biomed. Eng., No. 3, 199-203 (2018).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. V. Leonov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 53, No. 3, May-Jun., 2019, pp. 48-52.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leonov, D.V., Kulberg, N.S., Fin, V.A. et al. Clutter Filtering for Diagnostic Ultrasound Color Flow Imaging. Biomed Eng 53, 217–221 (2019). https://doi.org/10.1007/s10527-019-09912-1

Download citation