Carbon Nanomaterials for the Creation of Biological Sensors for Socially Important Diseases

In this article, the main directions in the development of carbon nanomaterial-based biological sensors for rapid analysis of socially significant blood diseases are considered. Carbon nanotubes, graphene, and derivative materials are shown to have potential for use in biosensors and are used to create various types of sensors.

This is a preview of subscription content, access via your institution.


  1. 1.

    Karyakin, A. A., et al., “Biosensors: Devices, classification, and functional characteristics,” Sensor, No. 1 (2002); http://www.

  2. 2.

    Byrne, B., Stack, E., Gilmartin N., et al., “Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins,” Sensors, 9, 4407-4445 (2009).

    Article  Google Scholar 

  3. 3.

    Sharma, S., Byrne, H., and O’Kennedy, R. J., “Antibodies and antibody_derived analytical biosensors,” Essays Biochem., 60, 9-18 (2016).

    Article  Google Scholar 

  4. 4.

    Hye-Mi So, Keehoon Won, Yong Hwan Kim, et al., “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Amer. Chem. Soc., 127, 11,906-11,907 (2005).

  5. 5.

    Nigam, V. K. and Shukla, P., “Enzyme based biosensors for detection of environmental pollutants. A review,” J. Microbiol. Biotechnol., 25, 1773-1781 (2015).

    Article  Google Scholar 

  6. 6.

    Epstein, J. R., Biran, I., and Walt, D. R., “Fluorescence-based nucleic acid detection and microarrays,” Analytica Chimica Acta, 469, 3-36 (2002).

    Article  Google Scholar 

  7. 7.

    Wenhu Zhou, Po-Jung Jimmy Huang, Jinsong Ding, et al., “Aptamer-based biosensors for biomedical diagnostics,” Analyst, 139, 2627-2640 (2014).

  8. 8.

    Jarczewska, M., Gorski, L., and Malinowska, E., “Electro-chemical aptamer-based biosensors as potential tools for clinical diagnostics,” Anal. Methods, 8, 3861-3877 (2016).

    Article  Google Scholar 

  9. 9.

    Ellington, A. D., and Szostak, J. W., “In vitro selection of RNA molecules that bind specific ligands,” Nature, 346, 818-822 (1990).

    Article  Google Scholar 

  10. 10.

    Tuerk, C. and Gold, L., “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA poly-merase,” Science, 249, 505-510 (1990).

    Article  Google Scholar 

  11. 11.

    Mishchenko, S. V. and Tkachev, A. G., Carbon Nanomaterials. Production, Properties, Use [in Russian], Mashinostroenie, Moscow (2008).

  12. 12.

    Nawaz, M. A., Rauf, S., Catanante, G., Nawaz, M. H., Nunes, G., Marty, J. L., and Hayat, A., “One step assembly of thin films of carbon nanotubes on screen printed interface for electrochemical aptasensing of breast cancer biomarker,” Sensors (Basel), 16, No. 10 (2016).

  13. 13.

    Heller, D. A., Jin, H., Martinez Brittany, M., et al., “Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes,” Nature Nanotechnology, 4, 114-120 (2009).

    Article  Google Scholar 

  14. 14.

    Brusnitsyn, D. V., Medyantseva, E. P., Varlamova, R. M., Maksimov, A. A., Fattakhova, A. N., and Budnikov, G. K., “Amperometric determination of antidepressants by monoamine oxidase biosensors based on carbon nanotubes and silver nanoparticles as modifiers,” Uch. Zapisk. Kazan. Univ., 156, Book 2, 37-50 (2014).

  15. 15.

    “Development of an aptasensor − a biosensor based on carbon nanotubes,” Nanotechnology News Network (2010).

  16. 16.

    Stepanov, A. V., Channeling of Low-Energy Atomic Particles in Carbon Nanotubes [in Russian], Dissertation for Master’s Degree in Physical and Mathematical Sciences, Cheboksary (2017).

  17. 17.

    Mayorov, A. S. et al., “Micrometer-scale ballistic transport in encapsulated graphene at room temperature,” Nano Lett., 11, 2396-2399 (2011).

    Article  Google Scholar 

  18. 18.

    Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, 321, 385-388 (2008).

    Article  Google Scholar 

  19. 19.

    Liu, F., Ming, P. M., and Li, J., “Ab initio calculation of ideal strength and phonon instability of graphene under tension,” Phys. Rev. B, 76, 064120 (2007).

  20. 20.

    Balandin, A. A., “Thermal properties of graphene and nanostructured carbon materials,” Nature Mater., 10, 569-581 (2011).

    Article  Google Scholar 

  21. 21.

    The Graphene Boom: A summary [in Russian], http://www.

  22. 22.

    Review of the Graphene Market [in Russian], http://www.

  23. 23.

    Antony, J. and Grimme, S., “Structures and interaction energies of stacked graphene_nucleobase complexes,” Phys. Chem. Chem. Phys., 10, No. 19, 2722-2729 (2008).

    Article  Google Scholar 

  24. 24.

    Gowtham, S., Scheicher, R. H., Ahuja R., et al., “Physisorption of nucleobases on graphene: Density-functional calculations,” Phys. Rev. B, 76, No. 3, 033401 (2007).

  25. 25.

    Palecek, E. and Fojta, M., Electrochemical DNA Sensors, Wiley-VCH Verlag GmbH and Co., Weinheim, Germany (2005), pp. 127-192.

  26. 26.

    Odenthal, K. J. and Gooding, J. J., “An introduction to electro-chemical DNA biosensors,” Analyst, 132, No. 7, 603-610 (2007).

  27. 27.

    Ghosh, I., Stains, C. I., Ooi, A. T., et al., “Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics,” Mol. Biosyst., 2, No. 11, 551-560 (2006).

  28. 28.

    Gooding, J. J., “Electrochemical DNA hybridization biosensors,” Electroanalysis, 14, No. 17, 1149-1156 (2002).

    Article  Google Scholar 

  29. 29.

    Tao, Y., Lin, Y., Ren J., et al., “Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays,” Biomaterials, 34, No. 20, 4810-4817 (2013).

    Article  Google Scholar 

  30. 30.

    Singh, A., Sinsinbar, G., Choudhary M., et al., “Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid,” Sens. Actuators B: Chem., 185, 675-684 (2013).

    Article  Google Scholar 

  31. 31.

    Chen, T. Y., Loan, P. T. K., Hsu, C. L., et al., “Label-free detection of DNA hybridization using transistors based on CVD grown graphene,” Biosens. Bioelectron., 41, 103-109 (2013).

    Article  Google Scholar 

  32. 32.

    Velasco, J., Jr., Jing L., et al., “Transport spectroscopy of symmetry-broken insulating states in bilayer graphene,” Nature Nanotechnol., 7, 156-160 (2012).

    Article  Google Scholar 

  33. 33.

    Lin, L., Liu, Y., Tang L., et al., “Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy,” Analyst, 136, No. 22, 4732-4737 (2011).

    Article  Google Scholar 

  34. 34.

    Stebunov, Y. V., Afteneva, O. A., Arsenin, A. V., and Volkov, V. S., “Highly sensitive and selective sensor chips with graphene-oxide linking layer,” ACS Applied Materials and Interfaces, DOI:

  35. 35.

    Wang, Y., Shao, Y., Matson, D. W., et al., “Nitrogen-doped graphene and its application in electrochemical biosensing,” ACS Nano, 4, No. 4, 1790-1798 (2010).

    Article  Google Scholar 

  36. 36.

    Xu, C., Xu, B., Gu Y., et al., “Graphene-based electrodes for electrochemical energy storage,” Energy Environ. Sci., 6, No. 5, 1388-1414 (2013).

    Article  Google Scholar 

  37. 37.

    Cao, S., Zhang, L., Chai Y., et al., “Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst,” Talanta, 109, 167-172 (2013).

    Article  Google Scholar 

  38. 38.

    Jia, X., Liu, Z., Liu N., et al., “A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers,” Biosens. Bioelectron., 53, 160-166 (2014).

    Article  Google Scholar 

  39. 39.

    Kovaleva, N. Yu., Raevskaya, E. G., and Roshchin, A. V., “Questions of the safety of nanomaterials: nanosafety, nanotoxi-cology, and nanoinformatics,” Khim. Bezopastn., 1, No. 2, 44-87 (2017).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. A. Komarov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 53, No. 3, May-Jun., 2019, pp. 37-40.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shcherbin, S.N., Komarov, I.A., Chudnov, I.V. et al. Carbon Nanomaterials for the Creation of Biological Sensors for Socially Important Diseases. Biomed Eng 53, 201–206 (2019).

Download citation