Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT

The development and investigation of biosensors for the early and rapid diagnosis of a wide spectrum of diseases to provide significant reductions in mortality and loss of working time as a result of timely treatment is a current challenge in many countries. The active progress in biosensor technology is promoted by the fact that it is an interdisciplinary field exploiting advancements in very diverse areas of knowledge: from physiology to nanotechnology and electronics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Biomedical Nanostructures [Russian translation], Gonsalves, K. E., Halberstadt, C. R., Laurencin, C. T., and Nair, L. S. (eds.), Binom, Knowledge Laboratory, Moscow (2012).

  2. 2.

    Gudkov, A. G., Zherdeva, V. V., Tikhomirov, V. G., et al., “Current directions in biosensor diagnosis in vivo,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 20-28 (2016).

  3. 3.

    Varfolomeev, S. D., Evdokimov, Yu. M., and Ostrovskii, M. A., “Sensor biology, sensory technology, and the creation of novel sensory organs in humans,” Vestn. Ross. Akad,. Nauk, 70, No. 2, 99-108 (2000).

    Google Scholar 

  4. 4.

    Gudkov, A. G., Shashurin, V. D., Agasieva, S. V., et al., “Use of resonant tunneling nanodiodes to increase the effectiveness of electromagnetic energy converters in invasive biosensor systems based on radio-frequency identification technology,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 15-20 (2014).

  5. 5.

    Agasieva, S. V., Zybin, A. A., Tikhomirov, V. G., et al., “The concept of biosensor construction based on HEMT,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 13-18 (2017).

    Google Scholar 

  6. 6.

    Agasieva, S. V., V’yuginov, V. N., Tikhomirov, V. G., et al., “Increases in the stability of GaN HEMT to elevated temperature,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 19-21 (2017).

    Google Scholar 

  7. 7.

    V’yuginov, V. N., Gudkov, A. G., Zybin, A. A., et al., “Selection of circuit-design, design, and technological solutions in the development of an invasive transistor biosensor,” Elektromagn. Volny Elektron. Sist., 22, No. 4, 66-70 (2014).

    Google Scholar 

  8. 8.

    Gudkov, A. G., Agasieva, S. V., Petrov, V. I., et al., “Studies of the potential for radio-frequency identification with passive labels for invasive biosensing,” Med. Tekh., No. 2, 26-29 (2015).

  9. 9.

    Gudkov, A. G., Tikhomirov, V. G., Agasieva, S. V., et al., “Studies of the characteristics of heterostructural transistors for biosensors by mathematical modeling,” Med. Fiz., No. 5, 82-86 (2017).

  10. 10.

    Agasieva, S. V., Gudkov, A. G., Ivanov, Y. A., et al., “Prospects for application of radio-frequency identification technology with passive tags in invasive biosensor systems,” Biomed. Eng., 49, No. 2, 26-29 (2015).

    Google Scholar 

  11. 11.

    Tikhomirov, V. G., Gudkov, A. G., Agasieva, S. V., et al., “The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method,” J. Phys. Conf. Series, 917, 042016 (2017).

  12. 12.

    Yinghui Sun, Rongming Wang, and Kai Liu, “Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications,” Appl. Phys. Rev., 4, No. 1, 011301 (2017).

  13. 13.

    Kang, B. S., Wang, H. T., Pearton, S. J., et al., “Electrical detection of biomaterials using AlGaN/GaN HEMTs,” J. Appl. Phys., 104, No. 8, 031101 (2008).

  14. 14.

    Hung, S. C., Wang, Y. L., Hicks, B., Pearton S. J., et al., “Integration of selective area anodized AgCl thin film with AlGaN/GaN HEMTs for chloride ion detection,” Electrochem. Solid-State Lett., 11, No. 9, H241-H244 (2008).

    Article  Google Scholar 

  15. 15.

    Tikhomirov, V. G., Maleev, N. A., Kuz’menkov, A. G., et al., “Studies of the effects of the parameters of the gate region on the static characteristics of UHF field effect transistors based on pseudomorphic AlGaAs–InGaAs–GaAs heterostructures,” Fiz. Tekh. Poluprovod., 45, No. 10, 1405 (2011).

    Google Scholar 

  16. 16.

    Tikhomirov, V., Zemlyakov, V., Volkov, V., et al., “Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation,” Semiconductors, 50, No. 2, 244-248 (2016).

    Article  Google Scholar 

  17. 17.

    Kang, B. S., Wang, H. T., Gila, B. P., et al., “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region,” Appl. Phys. Lett., 91, 012110 (2007).

    Article  Google Scholar 

  18. 18.

    Tao Kong, Yang Chen, Yiping Ye, et al., “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sensors and Actuators B, 138, 344-350 (2009).

  19. 19.

    Chu, B. H., Kang, B. S., Hung, S. C., et al., “Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate,” J. Diabetes Sci. Technol., 4, No. 1, 171-179 (2010).

    Article  Google Scholar 

  20. 20.

    Fall, P. J. and Szerlip, H. M., “Lactic acidosis: from sour milk to septic shock,” J. Intensive Care Med., 20, 255-271 (2005).

    Article  Google Scholar 

  21. 21.

    Ma, S., Liao, Q., Liu, H., et al., “An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor,” Nanoscale, 4, 6415-6418 (2012).

    Article  Google Scholar 

  22. 22.

    Baur, B., Howgate, J., Eickhoffa M., et al., “Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors,” Appl. Phys. Meth., 89, 183901 (2006).

  23. 23.

    Gupta, S. K., Wu, H. H., Kwak, K. J., et al., “Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces,” J. Phys. D. Appl. Phys., 44, 034010 (2011).

    Article  Google Scholar 

  24. 24.

    Foster, C. M., Collazo, R., Sitar Z., et al., “Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization,” Langmuir, 29, 8377-8384 (2013).

    Article  Google Scholar 

  25. 25.

    Chih-Cheng Huang, Geng-Yen Lee, Jen-Inn Chyi, et al., “Study of protein-peptide binding affinity using AlGaN/GaN high electron mobility transistors,” ECS Trans., 50, No. 6, 223-232 (2013).

  26. 26.

    Makowski, M. S., Bryan, I., Sitar Z., et al., “Kinase detection with gallium nitride based high electron mobility transistors,” Appl. Phys. Lett., 103, 013701 (2013).

    Article  Google Scholar 

  27. 27.

    Wang, Y., Casal, P., Lu W., et al., “Toward single molecule detection in physiological buffer using planar FET biosensors,” in: Proceedings of the 71st Annual Device Research Conference (DRC 2013), IEEE Catalog Number: CFP13DRC-POD, 6 (2013).

  28. 28.

    Sarangadharana, I., Regmia, A., Yen-Wen Chena, et al., “High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors,” Biosens. Bioelectr., 100, 282-289 (2018).

  29. 29.

    Chu, C. H., Sarangadharan, I., Regmi A., et al., “Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum,” Sci. Rep., 7, No. 1, 5256 (2017).

    Article  Google Scholar 

  30. 30.

    Arden, W., Brillouet, M., Cogez P., et al., ITRS More-than-Moore whitepaper, The International Technology Roadmap for Semiconductors Consortium (2010); http://www.itrs.net, http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203. pdf.

  31. 31.

    Leamon, J. H. and Rothberg, J. M., “Cramming more sequencing reactions onto microreactor chips,” Chem. Rev., 107, 3367-3376 (2007).

    Article  Google Scholar 

  32. 32.

    Bergveld, P., “Thirty years of ISFETOLOGY – what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuat. B. Chem., 88, 1-20 (2003).

    Article  Google Scholar 

  33. 33.

    Bausells, J., Carrabina, J., Errachid, A., and Merlos, A., “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology,” Sens. Actuat. B. Chem., 57, No. 1-3, 56-62 (1999).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Gudkov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 53, No. 3, May-Jun., 2019, pp. 33-36.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gudkov, A.G., Agasieva, S.V., Tikhomirov, V.G. et al. Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT. Biomed Eng 53, 196–200 (2019). https://doi.org/10.1007/s10527-019-09908-x

Download citation