Biomedical Engineering

, Volume 51, Issue 6, pp 441–445 | Cite as

A Back Projection Method for Hexagonal Coding Collimators in Emission Tomography with Multiplexed Measurement Systems

  • S. A. Tereshchenko
  • G. A. Fedorov
  • M. A. Antakov
  • I. S. Burnaevsky
Article
  • 7 Downloads

Computerized emission tomography is an effective method for the diagnosis of pathological states in the human body. A new emission tomography approach was developed involving the use of multiplexed measurement systems (MMS). An iterative algorithm implementing the back projection method for emission tomography based on MMS was developed using hexagonal coding collimators. Numerical modeling demonstrated the validity of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hong, J. S., Vadawale, S. V., Grindlay, J. E., and Narita, T., “Laboratory coded-aperture imaging experiments: Radial hole coded masks and depth-sensitive CZT detectors,” Proc. SPIE, 5540, 63-72 (2004).CrossRefGoogle Scholar
  2. 2.
    Fedorov, G. A., Radiation Introscopy - Information Encoding and Optimization of Experiments [in Russian], Atomizdat, Moscow (1982).Google Scholar
  3. 3.
    Ivanov, O. P., Semin, I. A., Safronov, A. M., and Toritsyn, O. S., “Tests of an iPIX system for visualization of gamma radiation fields at the Kurchatov Institute Science Research Center,” ANRI, 89, No. 2, 66-70 (2017).Google Scholar
  4. 4.
    Gmar, M., Gal, O., Le Goaller, C., et al., “Development of coded- aperture imaging with a compact gamma camera,” IEEE Trans. Nuc. Sci., 51, No. 4, 1682-1687 (2004).CrossRefGoogle Scholar
  5. 5.
    Haboub, A., MacDowell, A. A., Marchesini, S., and Parkinson, D. Y., “Coded aperture imaging for fluorescent X-rays,” Rev. Sci. Instr., 85, No. 6, 35-40 (2014).CrossRefGoogle Scholar
  6. 6.
    Chi, W. and George, N., “Optical imaging with phase-coded aperture,” Optics Express, 19, No. 5, 4294-4300 (2011).CrossRefGoogle Scholar
  7. 7.
    Cieslak, M. J., Gamage K. A., and Glover, R., “Coded-aperture imaging systems: Past, present and future development – A review,” Rad. Meas., 92, 59-71 (2011).CrossRefGoogle Scholar
  8. 8.
    Gottesman, S. R., Isser, A., and Gigioli, G. W., “Adaptive coded aperture imaging: Progress and potential future applications,” Proc. SPIE, 8165, 816513-816521 (2011).CrossRefGoogle Scholar
  9. 9.
    Fedorov, G. A. and Tereshchenko, S. A., Computerized Emission Tomography [in Russian], Energoatomizdat, Moscow (1990).Google Scholar
  10. 10.
    Starfield, D. M., Rubin, D. M., and Marwala, T., “High transparency coded apertures in planar nuclear medicine imaging,” Proc. 29th Ann. Int. Conf. IEEE EMBS, 4468-4471 (2007).Google Scholar
  11. 11.
    Utkin, V. M., Kumakhov, M. A., Blinov, N. N., et al., “The MiniScan mobile gamma camera and results from its use,” Med. Fizika, No. 1, 42-53 (2007).Google Scholar
  12. 12.
    Kazachkov, Yu. P., Semenov, D. S., and Goryacheva, N. P., “The use of coding apertures in medical г cameras,” Prib. Tekhn. Eksperim., No. 2, 131-139 (2007).Google Scholar
  13. 13.
    Accorsi, R., Design of Near-Field Coded Aperture Cameras for High-Resolution Medical and Industrial Gamma-Ray Imaging, Ph.D. Thesis, Department of Nuclear Engineering, MIT (2001).Google Scholar
  14. 14.
    Tereshchenko, S. A., Methods in Computerized Tomography [in Russian], Fizmatlit, Moscow (2004).Google Scholar
  15. 15.
    Fedorov, G. A. and Tereshchenko, S. A., “Multiplexed Systems for the detection of ionizing radiation. 1. Codes and encoders,” Meas. Techn., 38, No. 11, 1287-1297 (1995).CrossRefGoogle Scholar
  16. 16.
    Fedorov, G. A. and Tereshchenko, S. A., “Integral code systems for recording ionizing radiation: Iterative image reconstruction algorithms for focal plane processing,” Meas. Techn., 44, No. 4, 422-427 (2001).CrossRefGoogle Scholar
  17. 17.
    Fedorov, G. A., Tereshchenko, S. A., Antakov, M. A., and Burnaevskii, I. S., “Point spread functions of integral-code measurement systems with multiple-pinhole hexagonal coding collimators,” Meas. Techn., 55, No. 5, 574-582 (2012).CrossRefGoogle Scholar
  18. 18.
    Fedorov, G. A., Tereshchenko, S. A., Antakov, M. A., and Burnaevsky, I. S., “Unipolar and bipolar measurement schemes for reconstruction of the spatial distribution of radiation sources using hexagonal coding collimators,” Med. Tekhnika, No. 1, 43-45 (2014).Google Scholar
  19. 19.
    Fedorov, G. A. and Tereshchenko, S. A., “Extended pseudorandom sequences and two-dimensional coding collimators based on them,” Meas. Techn., 50, No. 6, 681-689 (2007).CrossRefGoogle Scholar
  20. 20.
    Lalush, D. S. and Wernick, M. N., “Iterative image reconstruction,” in: Wernick, M. N. and Aarsvold, J. N. (eds.) Emission Tomography. The Fundamentals of PET and SPECT, Elsevier (2004), pp. 443-472.CrossRefGoogle Scholar
  21. 21.
    Vengrinovich, V. L. and Zolotarev, S. A., Iterative Methods in Tomography [in Russian], Beloruskaya Navuka, Minsk (2009).Google Scholar
  22. 22.
    Fedorov, G. A., Dmitriev, A. M., Tereshchenko, S. A., and Antakov, M. A., “Reconstruction of images of the spatial distributions of sources of ionizing radiation on the basis of iterative back projection in multiplexed coding measurement systems,” ANRI, 68, No. 1, 62-70 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Tereshchenko
    • 1
  • G. A. Fedorov
    • 2
  • M. A. Antakov
    • 1
  • I. S. Burnaevsky
    • 1
  1. 1.National Research University of Electronic Technology (MIET)ZelenogradRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations