Skip to main content

Advertisement

Log in

A Back Projection Method for Hexagonal Coding Collimators in Emission Tomography with Multiplexed Measurement Systems

  • Published:
Biomedical Engineering Aims and scope

Computerized emission tomography is an effective method for the diagnosis of pathological states in the human body. A new emission tomography approach was developed involving the use of multiplexed measurement systems (MMS). An iterative algorithm implementing the back projection method for emission tomography based on MMS was developed using hexagonal coding collimators. Numerical modeling demonstrated the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hong, J. S., Vadawale, S. V., Grindlay, J. E., and Narita, T., “Laboratory coded-aperture imaging experiments: Radial hole coded masks and depth-sensitive CZT detectors,” Proc. SPIE, 5540, 63-72 (2004).

    Article  Google Scholar 

  2. Fedorov, G. A., Radiation Introscopy - Information Encoding and Optimization of Experiments [in Russian], Atomizdat, Moscow (1982).

    Google Scholar 

  3. Ivanov, O. P., Semin, I. A., Safronov, A. M., and Toritsyn, O. S., “Tests of an iPIX system for visualization of gamma radiation fields at the Kurchatov Institute Science Research Center,” ANRI, 89, No. 2, 66-70 (2017).

    Google Scholar 

  4. Gmar, M., Gal, O., Le Goaller, C., et al., “Development of coded- aperture imaging with a compact gamma camera,” IEEE Trans. Nuc. Sci., 51, No. 4, 1682-1687 (2004).

    Article  Google Scholar 

  5. Haboub, A., MacDowell, A. A., Marchesini, S., and Parkinson, D. Y., “Coded aperture imaging for fluorescent X-rays,” Rev. Sci. Instr., 85, No. 6, 35-40 (2014).

    Article  Google Scholar 

  6. Chi, W. and George, N., “Optical imaging with phase-coded aperture,” Optics Express, 19, No. 5, 4294-4300 (2011).

    Article  Google Scholar 

  7. Cieslak, M. J., Gamage K. A., and Glover, R., “Coded-aperture imaging systems: Past, present and future development – A review,” Rad. Meas., 92, 59-71 (2011).

    Article  Google Scholar 

  8. Gottesman, S. R., Isser, A., and Gigioli, G. W., “Adaptive coded aperture imaging: Progress and potential future applications,” Proc. SPIE, 8165, 816513-816521 (2011).

    Article  Google Scholar 

  9. Fedorov, G. A. and Tereshchenko, S. A., Computerized Emission Tomography [in Russian], Energoatomizdat, Moscow (1990).

    Google Scholar 

  10. Starfield, D. M., Rubin, D. M., and Marwala, T., “High transparency coded apertures in planar nuclear medicine imaging,” Proc. 29th Ann. Int. Conf. IEEE EMBS, 4468-4471 (2007).

  11. Utkin, V. M., Kumakhov, M. A., Blinov, N. N., et al., “The MiniScan mobile gamma camera and results from its use,” Med. Fizika, No. 1, 42-53 (2007).

    Google Scholar 

  12. Kazachkov, Yu. P., Semenov, D. S., and Goryacheva, N. P., “The use of coding apertures in medical г cameras,” Prib. Tekhn. Eksperim., No. 2, 131-139 (2007).

  13. Accorsi, R., Design of Near-Field Coded Aperture Cameras for High-Resolution Medical and Industrial Gamma-Ray Imaging, Ph.D. Thesis, Department of Nuclear Engineering, MIT (2001).

  14. Tereshchenko, S. A., Methods in Computerized Tomography [in Russian], Fizmatlit, Moscow (2004).

    Google Scholar 

  15. Fedorov, G. A. and Tereshchenko, S. A., “Multiplexed Systems for the detection of ionizing radiation. 1. Codes and encoders,” Meas. Techn., 38, No. 11, 1287-1297 (1995).

    Article  Google Scholar 

  16. Fedorov, G. A. and Tereshchenko, S. A., “Integral code systems for recording ionizing radiation: Iterative image reconstruction algorithms for focal plane processing,” Meas. Techn., 44, No. 4, 422-427 (2001).

    Article  Google Scholar 

  17. Fedorov, G. A., Tereshchenko, S. A., Antakov, M. A., and Burnaevskii, I. S., “Point spread functions of integral-code measurement systems with multiple-pinhole hexagonal coding collimators,” Meas. Techn., 55, No. 5, 574-582 (2012).

    Article  Google Scholar 

  18. Fedorov, G. A., Tereshchenko, S. A., Antakov, M. A., and Burnaevsky, I. S., “Unipolar and bipolar measurement schemes for reconstruction of the spatial distribution of radiation sources using hexagonal coding collimators,” Med. Tekhnika, No. 1, 43-45 (2014).

  19. Fedorov, G. A. and Tereshchenko, S. A., “Extended pseudorandom sequences and two-dimensional coding collimators based on them,” Meas. Techn., 50, No. 6, 681-689 (2007).

    Article  Google Scholar 

  20. Lalush, D. S. and Wernick, M. N., “Iterative image reconstruction,” in: Wernick, M. N. and Aarsvold, J. N. (eds.) Emission Tomography. The Fundamentals of PET and SPECT, Elsevier (2004), pp. 443-472.

    Chapter  Google Scholar 

  21. Vengrinovich, V. L. and Zolotarev, S. A., Iterative Methods in Tomography [in Russian], Beloruskaya Navuka, Minsk (2009).

    Google Scholar 

  22. Fedorov, G. A., Dmitriev, A. M., Tereshchenko, S. A., and Antakov, M. A., “Reconstruction of images of the spatial distributions of sources of ionizing radiation on the basis of iterative back projection in multiplexed coding measurement systems,” ANRI, 68, No. 1, 62-70 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tereshchenko.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 51, No. 6, Nov.-Dec., 2017, pp. 46-49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshchenko, S.A., Fedorov, G.A., Antakov, M.A. et al. A Back Projection Method for Hexagonal Coding Collimators in Emission Tomography with Multiplexed Measurement Systems. Biomed Eng 51, 441–445 (2018). https://doi.org/10.1007/s10527-018-9766-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-018-9766-3

Navigation