Potential of the predatory mite Amblydromalus zannoui to control pest mites on Jatropha curcas

Abstract

Amblydromalus zannoui Sourassou, Sarmento and Moraes is a phytoseiid mite of the limonicus group described from central Brazil from leaves of physic nut, Jatropha curcas L. (Malpighiales: Euphorbiaceae), a plant potentially useful as a source of biofuel. This plant is often attacked by the mites Polyphagotarsonemus latus (Banks) (Prostigmata: Tarsonemidae) and Tetranychus bastosi Tuttle, Baker and Sales (Prostigmata: Tetranychidae). The objectives of this work were to evaluate the predation rate of A. zannoui on those phytophagous mites, to assess its life cycle on these prey and on pollen of Ricinus communis L. (Euphorbiaceae), and to determine its attraction to physic nut leaves infested by P. latus or T. bastosi. Amblydromalus zannoui attacked more nymphs and adults than eggs of P. latus, and more eggs and larvae than adults of T. bastosi. The life table parameters suggest that A. zannoui performs better on P. latus (rm: 0.20, Ro: 18.77; λ: 1.23) and pollen (rm: 0.18, Ro: 23.32, λ: 1.18). The predator seems to be attracted to plants with P. latus, but attraction was not clear cut for plants with T. bastosi. The results suggested that A. zannoui is a potential control agent to be used against P. latus on physic nut plants, and that R. communis pollen can be used as supplementary food to maintain the predator population in the absence of prey.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abou-Awad BA, Hafez SM, Farhat BM (2014) Biological studies of the predacious mite Amblyseius swirskii, a predator of the broad mite Polyphagotarsonemus latus on pepper plants (Acari: Phytoseiidae: Tarsonemidae). Arch Phytopathol Pflanzenschutz 47:349–354

    CAS  Article  Google Scholar 

  2. Bellini MR, Araujo RV, Silva ES, Moraes GJ, Berti Filho E (2010) Life cycle of Proprioseiopsis cannaensis (Muma) (Acari: Phytoseiidae) on different types of food. Neotrop Entomol 39:360–364

    PubMed  Article  Google Scholar 

  3. Cañarte E, Sarmento RA, Venzon M, Pedro-Neto M, Ferreira Junior DF, Santos FA, Pallini A (2017) Suitability and nutritional requirements of the predatory mite Typhlodromus transvaalensis, a potential biological control agent of physic nut pest mites. Biol Control 115:165–172

    Article  Google Scholar 

  4. Chittenden AR, Saito Y (2001) Why are there feeding and nonfeeding larvae in phytoseiid mites (Acari, Phytoseiidae)? J Ethol 19:55–62

    Article  Google Scholar 

  5. Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–297

    CAS  PubMed  Article  Google Scholar 

  6. Cruz WP, Sarmento RA, Teodoro A, Pedro NM, Ignacio M (2013) Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated. Exp Appl Acarol 60:509–519

    PubMed  Article  Google Scholar 

  7. Cruz WP, Sarmento RA, Pedro-Neto M, Teodoro AV, Rodrigues DM, Moraes GJ (2014) Population dynamics of Aceodromus convolvuli (Acari: Mesostigmata: Blattisociidae) on spontaneous plants associated with Jatropha curcas in central Brazil. Exp Appl Acarol 64:309–319

    PubMed  Article  Google Scholar 

  8. Cruz WP, Sarmento RA, Teodoro AV, Erasmo EAL, Pedro-Neto M, Ignacio M, Ferreira Junior DF (2012) Acarofauna em cultivo de pinhão-manso e plantas espontâneas associadas. Pesqui Agropecu Bras 47:319–327

    Article  Google Scholar 

  9. Dicke M, Sabelis MW, De Jong M, Alers MP (1990) Do phytoseiid mites select the best prey species in terms of reproductive success? Exp Appl Acarol 8:161–173

    Article  Google Scholar 

  10. Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE (1998) Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in response of predatory mites. Exp Appl Acarol 22:311–333

    CAS  Article  Google Scholar 

  11. Dinh NV, Janssen A, Sabelis MW (1988) Reproductive success of Amblyseius idaeus and Amblyseius anonymus on a diet of two-spotted spider mites. Exp Appl Acarol 4:41–51

    Article  Google Scholar 

  12. Escudero LA, Ferragut F (2005) Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae). Biol Control 32:378–384

    Article  Google Scholar 

  13. Fan Y, Frederick LP (1994) Functional response of Neoseiulus barkeri Hugles on two-spotted mite (Acari: Tetranychidae). Exp Appl Acarol 18:613–621

    Article  Google Scholar 

  14. Gilstrap FE, Friese DD (1985) The predatory potential of Phytoseiulus persimilis, Amblyseius californicus and Metaseiulus occidentalis (Acarina: Phytoseiidae). Int J Acarol 11:163–168

    Article  Google Scholar 

  15. Gnanvossou D, Yaninek JS, Hanna R, Dicke M (2003) Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Exp Appl Acarol 30:265–278

    PubMed  Article  PubMed Central  Google Scholar 

  16. Janssen A, Bruin J, Jacobs G, Schraag R, Sabelis MW (1997) Predators use volatiles to avoid prey patches with conspecifics. J Anim Ecol 66:223–232

    Article  Google Scholar 

  17. Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518

    Article  Google Scholar 

  18. McMurtry JA, Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Google Scholar 

  19. McMurtry JA, Scriven GT (1964) Life-history studies of Amblyseius limonicus, with comparative observations on Amblyseius hibisci (Acarina: Phytoseiidae). Ann Entomol Soc Am 58:106–111

    Article  Google Scholar 

  20. Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  21. Messelink GJ, van Maanen R, van Steenpaal SEF, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  22. Meyer JS, Ingersoll CG, McDonald LL, Boyce MS (1986) Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67:1156–1166

    Article  Google Scholar 

  23. Migeon A, Dorkeld F (2020) Spider mites web: a comprehensive database for the Tetranychidae. http://www1.montpellier.inra.fr/CBGP/spmweb. Accessed 15 Dec 2020

  24. Moraes GJ, Mesa NC, Braun A, Melo EL (1994) Definition of Amblyseius limonicus group (Acari: Phytoseiidae), with description of two new species and new records. Int J Acarol 20:209–217

    Article  Google Scholar 

  25. Oliveira H, Janssen A, Pallini A, Venzon M, Fadini M, Duarte V (2007) A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biol Control 42:105–109

    Article  Google Scholar 

  26. Onzo A, Houedokoho AF, Hanna R (2012) Potential of the predatory mite, Amblyseius swirskii to suppress the broad mite, Polyphagotarsonemus latus on the gboma eggplant, Solanum macrocarpon. J Insect Sci 12:7

    PubMed  PubMed Central  Article  Google Scholar 

  27. Pandey VC, Singh K, Singh JS, Kumar A, Singh B, Singh RP (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sustain Energy Rev 16:2870–2883

    CAS  Article  Google Scholar 

  28. Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110:179–185

    CAS  PubMed  Article  Google Scholar 

  29. R Development Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/ Accessed 15 May 2020

  30. Rodríguez-Cruz FA, Venzon M, Pinto CMF (2013) Performance of Amblyseius herbicolus on broad mites and on castor bean and sunnhemp pollen. Exp Appl Acarol 60:497–507

    PubMed  Article  Google Scholar 

  31. Rodríguez-Cruz FA, Janssen A, Pallini A, Duarte MVA, Pinto CMF, Venzon M (2017) Two predatory mite species as potential control agents of broad mites. BioControl 62:505–513

    Article  CAS  Google Scholar 

  32. Sabelis MW (1985) Predator-prey interaction: predation on spider mites. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, pp 103–129

    Google Scholar 

  33. Samaras K, Pappas ML, Fytas E, Broufas GD (2015) Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae). BioControl 60:773–782

    CAS  Article  Google Scholar 

  34. Samaras K, Pappas ML, Fytas E, Broufas GD (2019) Pollen provisioning enhances the performance of Amblydromalus limonicus on an unsuitable prey. Front Ecol Evol 7:122

    Article  Google Scholar 

  35. Saraiva AS, Sarmento RA, Erasmo EAL, Pedro-Neto M, Souza DJ, Teodoro AV, Silva DG (2015) Weed management practices affect the diversity and relative abundance of physic nut mites. Exp Appl Acarol 65:359–375

    CAS  Article  Google Scholar 

  36. Sarmento RA, Rodrigues DM, Faraji F, Erasmo EAL, Lemos F, Teodoro AV, Kikuchi WT, Santos GR, Pallini A (2011) Suitability of the predatory mites Iphiseiodes zuluagai and Euseius concordis in controlling Polyphagotarsonemus latus and Tetranychus bastosi on Jatropha curcas plants in Brazil. Exp Appl Acarol 53:203–214

    PubMed  Article  PubMed Central  Google Scholar 

  37. SAS Institute (2007) SAS system for windows 2000, version 8.2. SAS Institute, Cary, North Carolina, USA

    Google Scholar 

  38. Sourassou NF, Sarmento RA, Moraes GJ (2017) Description of a new species of the Amblydromalus limonicus (Acari: Phytoseiidae) species group based on morphological and molecular evidences. Int J Acarol 43:374–379

    Article  Google Scholar 

  39. Vacante V (2015) Handbook of mites of economic plants: the identification, bio-ecology and control. CABI, Wallingford

    Google Scholar 

  40. van den Boom CE, van Bekk TA, Dicke M (2002) Attraction of Phytoseiulus persimilis (Acari: Phytoseiidae) towards volatiles from various Tetranychus urticae-infested plant species. Bull Entomol Res 92:539–546

    PubMed  Article  CAS  Google Scholar 

  41. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57:1–20

    Article  Google Scholar 

  42. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63:39–59

    Article  Google Scholar 

  43. Wäckers FL (2005) Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 17–74

    Google Scholar 

  44. Yaninek JS, Hanna R (2003) Cassava green mite in Africa—a unique example of successful classical biological control of a mite pest on a continental scale. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. Cambridge University Press, Cambridge, pp 61–75

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES-PROCAD-AMAZÔNIA). We thank the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – Project: 306652/2018-8) for financially supporting this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renato Almeida Sarmento.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miranda, V.C., de Azevedo, E.B., da Cruz, W.P. et al. Potential of the predatory mite Amblydromalus zannoui to control pest mites on Jatropha curcas. BioControl (2021). https://doi.org/10.1007/s10526-021-10080-z

Download citation

Keywords

  • Predator
  • Tarsonemidae
  • Tetranychidae
  • Castor bean pollen
  • Biological control