A framework for predicting competition between native and exotic hymenopteran parasitoids of lepidopteran larvae using taxonomic collections and species level traits

Abstract

Functional traits quantify the distinctiveness of ecological communities and provide a theoretical basis for understanding inter-specific competition, competitive exclusion, and limiting similarity. Functional traits can also be used to evaluate the risk of exotic species and biological control agents. The generalist parasitoid Meteorus pulchricornis (Wesmael 1835) (Braconidae: Hymenoptera) was used as a case study to evaluate the potential for inter-specific competition with resident hymenopteran larval parasitoid species in New Zealand. Information on taxonomic and life history traits were collated from published and unpublished literature, while morphological traits were obtained by measuring specimens in the New Zealand Arthropod Collection. Functional trait information was gathered for 89 parasitoid species, and a hierarchical agglomeration approach was used to cluster species based on similarity. A principal component analysis identified several key traits, including host development (idiobiosis, koinobiosis), site of development (ectoparasitoid, endoparasitoid), progeny per host, the host stage attacked, and ovipositor morphology. Analysis show that M. pulchricornis has the potential to compete with a different range of species, including biocontrol agents, and endemic or native species. Functional trait information using the literature and taxonomic collections can be used to complement current risk assessment tools.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Barratt B, Moeed A (2005) Environmental safety of biological control: policy and practice in New Zealand. Biol Control 35:247–252

    Google Scholar 

  2. Bartomeus I, Stavert J, Ward DF, Aguado O (2019) Historic collections as a tool for assessing the global pollinator crisis. Philos Trans R Soc B 374(1763):20170389

    Google Scholar 

  3. Berndt LA (2010) Will competition from Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) limit the success of the potential biocontrol agent Cotesia urabae Austin & Allen (Hymenoptera: Braconidae)? Aust J Entomol 49:369–376

    Google Scholar 

  4. Berry JA (1997) Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae: Euphorinae), a new record for New Zealand. NZ Entomol 20:45–48

    Google Scholar 

  5. Berry JA, Walker GP (2004) Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae: Euphorinae): an exotic polyphagous parasitoid in New Zealand. NZ J Zool 31:33–44

    Google Scholar 

  6. Bin F, Roversi PR, van Lenteren JC (2012) Erroneous host identification frustrates systematics and delays implementation of biological control. Redia 95:83–88

    Google Scholar 

  7. Brockerhoff EG, Barratt BI, Beggs JR, Fagan LL, Malcolm K, Phillips CB, Vink CJ (2010) Impacts of exotic invertebrates on New Zealand's indigenous species and ecosystems. NZ J Ecol 34:158–174

    Google Scholar 

  8. Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6:857–865

    Google Scholar 

  9. Charles JG (2012) Assessing the non-target impacts of classical biological control agents: is host-testing always necessary? BioControl 57:619–626

    Google Scholar 

  10. Clarke KR and Gorley RN (2006) Primer v6 user manual/tutorial primer-e ltd Plymouth, England

  11. Colautti R, Parker JD, Cadotte MW, Pyšek P, Brown CS, Sax D, Richardson D (2014) Quantifying the invasiveness of species. NeoBiota 21:7–27

    Google Scholar 

  12. Copping LG (2005) Natural enemies: an introduction to biological control. Cambridge University Press, Cambridge

    Google Scholar 

  13. Cornelissen JH, Makoto K (2014) Winter climate change, plant traits and nutrient and carbon cycling in cold biomes. Ecol Res 29:517–527

    CAS  Google Scholar 

  14. Diaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. J Veg Sci 9:113–122

    Google Scholar 

  15. Edney-Browne E, Brockerhoff EG, Ward DF (2018) Establishment patterns of exotic insects in New Zealand. Biol Invas 20:1657–1669

    Google Scholar 

  16. Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    CAS  PubMed  Google Scholar 

  17. Hartnett D, MacDonald F, Martin N, Walker G, Ward DF (2018) Interactions between the exotic parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) and other larval parasitoids of native Lepidoptera. NZ J Zool 31:326–340

    Google Scholar 

  18. Harvey JA (2008) Comparing and contrasting development and reproductive strategies in the pupal hyperparasitoids Lysibia nana and Gelis agilis (Hymenoptera: Ichneumonidae). Evol Ecol 22:153–166

    Google Scholar 

  19. Harvey JA, Wagenaar R, Bezemer TM (2009) Life-history traits in closely related secondary parasitoids sharing the same primary parasitoid host: evolutionary opportunities and constraints. Entomol Exp et Appl 132:155–164

    Google Scholar 

  20. Horrocks KJ, Ward DF, Suckling DM (2019) Can natural enemies of current insect pests provide biotic resistance to future pests. Agric For Entomol 22(1):20–29

    Google Scholar 

  21. Johnson T (2013) Practical problems and their solutions in studying the biology of the mealybug Paracoccus burnerae (Brain) (Hemiptera: Pseudococcidae). Afr J Biotechnol 12:3609–3614

    Google Scholar 

  22. Kendall LK, Ward DF (2016) Habitat determinants of the taxonomic and functional diversity of parasitoid wasps. Biodivers Conserv 25:1955–1972

    Google Scholar 

  23. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236

    CAS  PubMed  Google Scholar 

  24. Kumschick S, Bacher S, Dawson W, Heikkilä J, Sendek A, Pluess T, Robinson TB, Kühn I (2012) A conceptual framework for prioritization of invasive alien species for management according to their impact. NeoBiota 15:69–100

    Google Scholar 

  25. Le Lann C, Visser B, van Baaren J, van Alphen JJM, Ellers J (2012) Comparing resource exploitation and allocation of two closely related aphid parasitoids sharing the same host. Evol Ecol 26:79–94

    Google Scholar 

  26. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    PubMed  Google Scholar 

  27. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    PubMed  Google Scholar 

  28. Lockwood JL, Hoopes MF, Marchetti MP (2013) Invasion ecology, 2nd edn. Wiley-Blackwell Somerset, Somerset

    Google Scholar 

  29. Louda SM, Pemberton R, Johnson M, Follett P (2003) Nontarget effects—The Achilles’ heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396

    CAS  PubMed  Google Scholar 

  30. Mack RN, Simberloff D, Lonsdale MW, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Google Scholar 

  31. Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, Studer M, Roudier P, Gonzalez J, Kozlowski, Schubert E, Murphy K (2016) ‘‘Finding groups in data”: cluster analysis extended. Available from https://cran.r-project.org/web/packages/cluster/cluster.pdf. Accessed on 16 Mar 2016

  32. Messing RH, Wright MG (2006) Biological control of invasive species: solution or pollution? Front Ecol Environ 4:132–140

    Google Scholar 

  33. Moran VC, Hoffmann JH, Zimmermann HG (2005) Biological control of invasive alien plants in South Africa: necessity, circumspection, and success. Front Ecol Environ 3:71–77

    Google Scholar 

  34. Morin PJ (2011) Community ecology. Wiley, Hoboken

    Google Scholar 

  35. Munro V, Henderson I (2002) Nontarget effect of entomophagous biocontrol: shared parasitism between native lepidopteran parasitoids and the biocontrol agent Trigonospila brevifacies (Diptera: Tachinidae) in forest habitats. Environ Entomol 31:388–396

    Google Scholar 

  36. Navas M, Violle C (2009) Plant traits related to competition: how do they shape the functional diversity of communities? Community Ecol 10:131–137

    Google Scholar 

  37. New Zealand Organisms Register (2016) New Zealand organisms register. Available from https://www.nzor.org.nz/. Cited on 10 Feb 2016

  38. Noyes JS (1994) The reliability of published host-parasitoid records: a taxonomist’s view. Norwegian J Agric Sci 16:59–69

    Google Scholar 

  39. Parr CL, Dunn RR, Sanders NJ, Weiser MD, Photakis M, Bishop TR, Brandão CR (2017) GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv and Diver 10:5–20

    Google Scholar 

  40. Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem: a new approach to ecological niche modeling, based on new tools drawn from biodiversity informatics is applied to the challenge of predicting potential species' invasions. BioScience 51:363–371

    Google Scholar 

  41. Prins HH, van Langevelde F (2008) Resource ecology: spatial and temporal dynamics of foraging. Springer, Berlin

    Google Scholar 

  42. Probert AF, Ward DF, Beggs JR, Lin S-L, Stanley MC (2019) Conceptual risk framework: integrating ecological risk of introduced species with recipient communities. BioScience 70:71–79

    Google Scholar 

  43. Quicke D (2015) The braconid and ichneumonid parasitoid wasps: biology, systematics: evolution and ecology. Wiley, New York

    Google Scholar 

  44. R Core Team (2013).R: a language and environment for statistical computing. Retrieved from https://www.r-project.org/.

  45. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    PubMed  Google Scholar 

  46. Ripley B, Venables, B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2015) Package ‘mass’. Available from https://cran.r-project.org/web/packages/MASS/MASS.pdf. Cited on 21 Jun 2016

  47. Rocha LA, Aleixo A, Allen G, Almeda F, Baldwin CC, Barclay M, Witt CC (2014) Specimen collection: an essential tool. Science 344:814–815

    CAS  PubMed  Google Scholar 

  48. Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–713

    CAS  Google Scholar 

  49. Schaffner U (2001) Host range testing of insects for biological weed control: how can it be better interpreted? data on the host range of biocontrol candidates are particularly relevant in assessing potential detrimental effects to nontarget organisms. BioScience 51:951–959

    Google Scholar 

  50. Schnitzler F, Hartley S, Lester PJ (2011) Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecol Entomol 36:241–250

    Google Scholar 

  51. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, Pagad S, Pyšek P, van Kleunen M, Winter M, Arianoutsou M, Bacher S, Blasius B, Brockerhoff EG, Brundu G, Capinha C, Causton CE, Celesti-Grapow L, Dawson W, Dullinger S, Economo EP, Fuentes N, Guénard B, Jäger H, Kartesz J, Kenis M, Kühn I, Lenzner B, Liebhold A, Mosena A, Moser D, Nentwig W, Nishino M, Pearman D, Pergl J, Rabitsch W, Rojas-Sandoval J, Roques A, Rorke S, Rossinelli S, Roy HE, Scalera R, Schindler S, Štajerová K, Tokarska-Guzik B, Walker K, Ward DF, Yamanaka T, Essl F (2018) The global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci USA 115(10):E2264–E2273

    CAS  PubMed  Google Scholar 

  52. Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Google Scholar 

  53. Sivinski J, Vulinec K, Aluja M (2001) Ovipositor length in a guild of parasitoids (Hymenoptera: Braconidae) attacking Anastrepha spp. fruit flies (Diptera: Tephritidae) in southern Mexico. Ann Entomol Soc Am 94:886–895

    Google Scholar 

  54. Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  55. Todd JH, Barratt BI, Tooman L, Beggs JR, Malone LA (2015) Selecting non-target species for risk assessment of entomophagous biological control agents: evaluation of the PRONTI decision-support tool. Biol Control 80:77–88

    Google Scholar 

  56. Tracy EF (2014) The promise of biological control for sustainable agriculture: a stakeholder-based analysis. J Sci Policy Gov 5:1–13

    Google Scholar 

  57. van Lenteren J, Babendreier D, Bigler F, Burgio G, Hokkanen H, Kuske S, Loomans AJM, Menzler-Hokkanen I, van Jijn PCJ, Thomas MD (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38

    Google Scholar 

  58. van Lenteren J, Bale J, Bigler F, Hokkanen H, Loomans A (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634

    PubMed  Google Scholar 

  59. Walker GP, Cameron, PJ (1989) Status of introduced larval parasitoids of tomato fruitworm. In: Proceedings of the 42nd NZ weed & pest control conference 8–10 Aug 1989 Dunedin New Zealand, pp 229−232

  60. Walker G, Herman T, Qureshi M, Winkler S, Wallace A (2005) Parasitism of tomato fruitworm larvae in process tomatoes at Pukekohe. N Z Plant Prot 58:224–228

    Google Scholar 

  61. Walker GP, MacDonald FH, Wallace AR, Cameron PJ (2016) Interspecific competition among Cotesia kazak, Microplitis croceipes, and Meteorus pulchricornis (Hymenoptera: Braconidae), larval parasitoids of Helicoverpa armigera (Lepidoptera: Noctuidae) in New Zealand. Biol Control 93:65–71

    Google Scholar 

  62. Ward DF (2012) More than just records: analysing natural history collections for biodiversity planning. PLoS ONE 7(11):e50346

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ward DF, Edney-Browne E (2015) Poles apart: comparing trends of alien Hymenoptera in New Zealand with Europe (DAISIE). PLoS ONE 10(7):e0132264

    PubMed  PubMed Central  Google Scholar 

  64. Ward DF, Leschen RA, Buckley TR (2015) More from ecologists to support natural history museums. Trends Ecol Evol 30:373–374

    PubMed  Google Scholar 

  65. Ward DF, Stanley MC, Toft RJ, Forgie SA, Harris RJ (2008) Assessing the risk of invasive ants: a simple and flexible scorecard approach. Insectes Soc 55:360–363

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from MBIE to Landcare Research within the Biota Portfolio, and the B3 (Better Border Biosecurity) Collaboration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zane McGrath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: David Andow

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3623 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGrath, Z., MacDonald, F., Walker, G. et al. A framework for predicting competition between native and exotic hymenopteran parasitoids of lepidopteran larvae using taxonomic collections and species level traits. BioControl 66, 59–69 (2021). https://doi.org/10.1007/s10526-020-10025-y

Download citation

Keywords

  • Parasitoid
  • Risk
  • Host
  • Functional
  • Meteorus pulchricornis