BioControl

, Volume 63, Issue 2, pp 253–264 | Cite as

Species complementarity in two myrmecophilous lady beetle species in a coffee agroecosystem: implications for biological control

  • Aaron Iverson
  • Doug Jackson
  • Robyn Burnham
  • Ivette Perfecto
  • Natalia Vandenberg
  • John Vandermeer
Article
  • 115 Downloads

Abstract

Natural enemy diversity may be beneficial, through species complementarity, or detrimental, through antagonistic interactions, such as competition or intraguild predation, for the biological control of agricultural pests. We studied two coexisting myrmecophilous coccinellid beetles, Azya orbigera (Mulsant) (Coleoptera: Coccinellidae) and an undescribed species in the genus Diomus (Coleoptera: Coccinellidae), in a coffee agroecosystem in Chiapas, Mexico. As both beetles specialize on the same prey, the green coffee scale pest, Coccus viridis (Green) (Hemiptera: Coccidae), we studied the beetles’ behavior and distribution to determine if they niche partition in order to avoid extreme competition. Through field surveys and lab experiments we detected spatial segregation but not resource partitioning among A. orbigera and Diomus sp. We posit that the presence of both species can lead to improved biocontrol of C. viridis populations through species complementarity. Our work supports the growing evidence that natural enemy diversity can provide enhanced conservation biological control.

Keywords

Agroecosystem Azya orbigera Coleoptera Coccinellidae Diomus Mutualism 

Notes

Acknowledgements

We thank Heidi Liere for assistance in developing research plans. We thank Braulio Chilél, Gabriel Domínguez, Hsunyi Hsieh, Emily Iverson, Gustavo López Bautista, Uciel Pérez Vásquez, and Stacy Philpott for assistance in the field and laboratory. We thank Dan Katz and Inés Ibañez for assistance in data analysis. We thank Inés Ibañez, Emily Iverson, and Heidi Liere for helpful comments on earlier versions of this paper. We also thank the Peters family for permission to work in Finca Irlanda.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10526_2017_9865_MOESM1_ESM.docx (290 kb)
Supplementary material 1 (DOCX 291 kb)

References

  1. Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564CrossRefGoogle Scholar
  2. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle D, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  4. Crowder DW, Jabbour R (2014) Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol Control 75:8–17CrossRefGoogle Scholar
  5. Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410CrossRefPubMedGoogle Scholar
  6. Fisher RA (1970) Statistical methods for research workers, 14th edn. Oliver and Boyd, EdinburghGoogle Scholar
  7. Hsieh H-Y, Liere H, Soto EJ, Perfecto I (2012) Cascading trait-mediated interactions induced by ant pheromones. Ecol Evol 2:2181–2191CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jackson D, Zemenick K, Huerta G (2012) Occurrence in the soil and dispersal of Lecanicillium lecanii, a fungal pathogen of the green coffee scale (Coccus viridis) and coffee rust (Hemileia vastatrix). Trop Subtrop Agroecosystems 15:389–401Google Scholar
  9. Janssen A, Montserrat M, HilleRisLambers R, de Roos A, Pallini A, Sabelis M (2006) Intraguild predation usually does not disrupt biological control. In: Brodeur J, Boivin G (eds) Trophic and guild interactions in biological control. Springer, Dordrecht, pp 21–44CrossRefGoogle Scholar
  10. Jha S, Allen D, Liere H, Perfecto I, Vandermeer J (2012) Mutualisms and population regulation: mechanism matters. PLoS ONE 7(8):e43510CrossRefPubMedPubMedCentralGoogle Scholar
  11. Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592CrossRefGoogle Scholar
  12. Liere H, Perfecto I (2008) Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid. Environ Entomol 37:143–149CrossRefPubMedGoogle Scholar
  13. Liere H, Jackson D, Vandermeer J (2012) Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control. PLoS ONE 7(9):e45508CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liere H, Perfecto I, Vandermeer J (2014) Stage-dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem. Ecol Evol 4:3201–3209CrossRefPubMedPubMedCentralGoogle Scholar
  15. Murphy ST (1997) Coffee. In: Ben-Dov Y, Hodgson C (eds) Soft scale insects: their biology, natural enemies, and control. Elsevier Science, Amsterdam, pp 367–380CrossRefGoogle Scholar
  16. Okuyama T (2013) On selection of functional response models: Holling’s models and more. BioControl 58:293–298CrossRefGoogle Scholar
  17. Ong TW, Vandermeer JH (2014) Antagonism between two natural enemies improves biological control of a coffee pest: the importance of dominance hierarchies. Biol Control 76:107–113CrossRefGoogle Scholar
  18. Ong TWY, Vandermeer JH (2015) Coupling unstable agents in biological control. Nat Commun 6:1–9CrossRefGoogle Scholar
  19. Perfecto I, Vandermeer J (2008) Spatial pattern and ecological process in the coffee agroforestry system. Ecology 89:915–920CrossRefPubMedGoogle Scholar
  20. Perfecto I, Vandermeer J (2015) Coffee agroecology. Routledge, New YorkGoogle Scholar
  21. Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377CrossRefGoogle Scholar
  22. Philpott SM, Bichier P (2012) Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agric Ecosyst Environ 149:171–180CrossRefGoogle Scholar
  23. Pritchard D (2017) frair: tools for functional response analysis. R package version 0.5.100. http://CRAN.R-project.org/package=frair
  24. Risch SJ, Andow DA, Altieri MA (1983) Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions. Environ Entomol 12:625–629CrossRefGoogle Scholar
  25. Rodríguez MÁ, Hawkins BA (2000) Diversity, function and stability in parasitoid communities. Ecol Lett 3:35–40CrossRefGoogle Scholar
  26. Rogers D (1972) Random search and insect population models. J Anim Ecol 41:369–383CrossRefGoogle Scholar
  27. Root R (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  28. Royama T (1971) A comparative study of models for predation and parasitism. Res Popul Ecol 1:1–91CrossRefGoogle Scholar
  29. Russell EP (1989) Enemies hypothesis: a review of the effect of vegetational diversity on predatory insects and parasitoids. Environ Entomol 18:590–599CrossRefGoogle Scholar
  30. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav Ecol 17:688–690CrossRefGoogle Scholar
  31. Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426CrossRefPubMedGoogle Scholar
  32. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874CrossRefGoogle Scholar
  33. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand T, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309CrossRefGoogle Scholar
  34. Vance-chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696CrossRefPubMedGoogle Scholar
  35. Vandenberg N, Iverson A, Liere H (in revision) A new species of myrmecophilous lady beetle in the genus Diomus (Coleoptera: Coccinellidae: Diomini) from Chiapas, Mexico that feeds on green coffee scale, Coccus viridis (Green) (Hemiptera: Coccidae)? ZootaxaGoogle Scholar
  36. Vandermeer J, Perfecto I (2006) A keystone mutualism drives pattern in a power function. Science 311:1000–1002CrossRefPubMedGoogle Scholar
  37. Vandermeer J, Perfecto I, Philpott S (2010) Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. BioScience 60:527–537CrossRefGoogle Scholar
  38. Young GR (1982) Recent work on biological control in Papua New Guinea and some suggestions for the future. Trop Pest Manag 28:107–114CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2018

Authors and Affiliations

  • Aaron Iverson
    • 1
  • Doug Jackson
    • 2
  • Robyn Burnham
    • 3
  • Ivette Perfecto
    • 4
  • Natalia Vandenberg
    • 5
  • John Vandermeer
    • 3
  1. 1.Department of EntomologyCornell UniversityIthacaUSA
  2. 2.Eastern Research Group, Inc.LexingtonUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborUSA
  4. 4.School for Environment and SustainabilityUniversity of MichiganAnn ArborUSA
  5. 5.USDA-Systematic Entomology Laboratory (Retired), c/o National Museum of Natural History, Department of EntomologySmithsonian InstitutionWashingtonUSA

Personalised recommendations