BioControl

, Volume 62, Issue 2, pp 125–138 | Cite as

Biofungicide utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments

  • Éva Leiter
  • Tamás Gáll
  • László Csernoch
  • István Pócsi
Review

Abstract

Today’s dearth of effective antimicrobial agents can be overcome by the use of antimicrobial proteins, which are produced naturally by a wide range of organisms including microorganisms, plants and mammals. These small basic proteins are highly stable, easy to manufacture on a large scale, and any resistance against them develops only rarely. These proteins are therefore good candidates for the treatment and prevention of various fungal infections. Importantly, these protein-based antimycotics can even be expressed heterologously in suitable organisms and can be used for various agricultural purposes in the future including biocontrol applications. In this review, we summarize today’s knowledge on the sources, structures, large-scale productions, direct surface applications as well as on the heterologous expressions in host plants of the small molecular mass antifungal proteins produced by filamentous fungi. Future developments foreseeable in this promising area of antifungal protein research are also presented and discussed in this review.

Keywords

Biofungicide Antifungal protein Heterologous expression Agricultural utilization 

Notes

Acknowledgements

The authors are indebted to Dr. Mattia Joan Plubell for editing the English of the paper. This work was financed by the Hungarian Scientific Research Fund (OTKA K100464).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acosta R, Rodríguez-Martín A, Martín A, Núñez F, Asensio MA (2009) Selection of antifungal protein-producing molds from dry-cured meat products. Int J Food Microbiol 135:39–46PubMedCrossRefGoogle Scholar
  2. Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, Santos R, Cammue BP, Thevissen K (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 583:2513–2516PubMedCrossRefGoogle Scholar
  3. Alem D, Díaz-Dellavalle P, Leoni C, De-Simone SG, Correa A, Oppezzo P, Rizza MD (2014) In search of topical agricultural biofungicides: properties of the recombinant antimicrobial peptide TrxAq-AMP obtained from Amaranthus quitensis. J Microb Biochem Technol 6:268–273Google Scholar
  4. Barakat H (2014) Bio-control of Alternaria alternata during banana storage by purified AFP using isoelectric focusing technique. Food Nutr Sci 5:1482–1495CrossRefGoogle Scholar
  5. Barakat H, Spielvogel A, Hassan M, El-Desouky A, El-Mansy H, Rath F, Meyer V, Stahl U (2010) The antifungal protein AFP from Aspergillus giganteus prevents secondary growth of different Fusarium species on barley. Appl Microbiol Biotechnol 87:617–624PubMedCrossRefGoogle Scholar
  6. Barakat H, Hassan M, El-Desouky AI, Stahl U, El-Mansy H (2012) The antifungal protein AFP from Aspergillus giganteus prevents Alternaria spoilage on tomato and mango fruits during storage. The 1st International Conference on Biotechnology Applications in Agriculture, Benha University, Moshtohor and Hurghada, 18-22 February, 2012, pp 29–38Google Scholar
  7. Barna B, Leiter É, Hegedűs N, Bíró T, Pócsi I (2008) Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 48:516–520PubMedCrossRefGoogle Scholar
  8. Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, Binder U, Sarg B, Kaiserer L, Chhillar AK, Eigentler A, Leiter É, Hegedüs N, Pócsi I, Lindner H, Marx F (2009) Functional aspects of the solution structure and dynamics of PAF–a highly-stable antifungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890PubMedPubMedCentralCrossRefGoogle Scholar
  9. Binder U, Oberparleiter C, Meyer V, Marx F (2010a) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol 75:294–307PubMedCrossRefGoogle Scholar
  10. Binder U, Chu M, Read ND, Marx F (2010b) The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. Eukaryot Cell 9:1374–1382PubMedPubMedCentralCrossRefGoogle Scholar
  11. Binder U, Bencina M, Eigentler A, Meyer V, Marx F (2011) The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol 11:209PubMedPubMedCentralCrossRefGoogle Scholar
  12. Binder U, Benčina M, Fizil Á, Batta G, Chhillar AK, Marx F (2015) Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger. FEBS Lett 589:1266–1271PubMedPubMedCentralCrossRefGoogle Scholar
  13. Campos-Olivas R, Bruix M, Santoro J, Lacadena J, Martinez del Pozo A, Gavilanes JG, Rico M (1995) NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34:3009–3021PubMedCrossRefGoogle Scholar
  14. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366:1987–1998CrossRefGoogle Scholar
  15. Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X (2013) Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 97:10381–10390PubMedCrossRefGoogle Scholar
  16. Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259PubMedCrossRefGoogle Scholar
  17. Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158PubMedCrossRefGoogle Scholar
  18. Cools HJ, Hammond-Kosack KE (2013) Exploitation of genomics in fungicide research: current status and future perspectives. Mol Plant Pathol 14:197–210PubMedCrossRefGoogle Scholar
  19. da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040PubMedCrossRefGoogle Scholar
  20. de Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fung Biol Rev 26:109–120CrossRefGoogle Scholar
  21. de Souza Cândido E, de Silva Cardoso MH, Sousa DA, Viana JC, de Oliveira-Júnior NG, Miranda V, Franco OL (2014) The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55:65–78CrossRefGoogle Scholar
  22. Delgado J, Acosta R, Rodríguez-Martín A, Bermúdez E, Núñez F, Asensio MA (2015) Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products. Int J Food Microbiol 205:23–29PubMedCrossRefGoogle Scholar
  23. Ding MZ, Lu H, Cheng JS, Chen Y, Jiang J, Qiao B, Li BZ, Yuan YJ (2012) Comparative metabolomic study of Penicillium chrysogenum during pilot and industrial penicillin fermentations. Appl Biochem Biotechnol 168:1223–1238PubMedCrossRefGoogle Scholar
  24. Dutta S (2015) Biopesticides: an ecofriendly approach for pest control. World J Pharm Pharm Sci 6:250–265Google Scholar
  25. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194PubMedCrossRefGoogle Scholar
  26. Galgóczy L, Virágh M, Kovács L, Tóth B, Papp T, Vágvölgyi C (2013) Antifungal peptides homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among Fusaria. Peptides 39:131–137PubMedCrossRefGoogle Scholar
  27. Garrigues S, Gandía M, Marcos JF (2016) Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Appl Microbiol Biotechnol 100:2243–2256PubMedCrossRefGoogle Scholar
  28. Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324PubMedCrossRefGoogle Scholar
  29. Glare TR (2015) Types of biopesticides. In: Leo Nollet ML, Rathore HS (eds) Biopesticides handbook, vol 2. CRC Press, New York, pp 7–25Google Scholar
  30. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258PubMedCrossRefGoogle Scholar
  31. Gognies S, Belarbi A, Barka EA (2001) Saccharomyces cerevisiae, a potential pathogen towards grapevine, Vitis vinifera. FEMS Microbiol Ecol 37:143–150CrossRefGoogle Scholar
  32. Goyal RK, Mattoo AK (2016) Plant antimicrobial peptides. In: Epand RM (ed) Host defense peptides and their potential as therapeutic agents, 1st edn. Springer, Switzerland, pp 111–136Google Scholar
  33. Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429CrossRefGoogle Scholar
  34. Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 73:2128–2134PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37:805–813PubMedCrossRefGoogle Scholar
  36. Hao JJ, Xu Y, Geng CD, Liu WY, Wang Ed, Gong ZZ, Ulbrich N (1998) Purification of α-sarcin and an antifungal protein from Aspergillus giganteus by blue sepharose CL-6B affinity chromatography. Protein Expr Purif 14:295–301PubMedCrossRefGoogle Scholar
  37. Hegedűs N, Marx F (2013) Antifungal proteins: more than antimicrobials? Fungal Biol Rev 26:132–145PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hegedűs N, Leiter É, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I (2011) The small molecular mass antifungal protein of Penicillium chrysogenum–a mechanism of action oriented review. J Basic Microbiol 51:561–571PubMedCrossRefGoogle Scholar
  39. Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33:1005–1023PubMedCrossRefGoogle Scholar
  40. Janisiewicz WJ, Pereira IB, Almeida MS, Roberts DP, Wisniewski A, Kurtenbach E (2008) Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biol Technol 47:218–225CrossRefGoogle Scholar
  41. Jones RW, Prusky D (2002) Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33–37PubMedCrossRefGoogle Scholar
  42. Junaid JM, Dar ND, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1:39–57Google Scholar
  43. Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter É, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210PubMedCrossRefGoogle Scholar
  44. Kang HK, Seo CH, Park Y (2015) Marine peptides and their anti-infective activities. Mar Drugs 13:618–654PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13:1032–1046PubMedCrossRefGoogle Scholar
  46. Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944CrossRefGoogle Scholar
  47. Kong K, Ntui VO, Makabe S, Khan RS, Mii M, Nakamura I (2014) Transgenic tobacco and tomato plants expressing wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2.1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96CrossRefGoogle Scholar
  48. Kong Q, Liang Z, Xiong J, Li H, Ren X (2016) Overexpression of the bivalent antibacterial peptide genes in Pichia pastoris delays sour rot in citrus fruit and induces Geotrichum citri-aurantii cell apoptosis. Food Biotechnol 30:79–97CrossRefGoogle Scholar
  49. Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L (2011) Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32:1724–1731PubMedCrossRefGoogle Scholar
  50. Kumar S, Kaushik N (2012) Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev 11:507–522CrossRefGoogle Scholar
  51. Lacadena J, Martínez del Pozo A, Gasset M, Patiño B, Campos-Olivas R, Vázquez C, Martínez-Ruiz A, Mancheño JM, Oñaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281PubMedCrossRefGoogle Scholar
  52. Lee GD, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263:646–651CrossRefGoogle Scholar
  53. Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49:2445–2453PubMedPubMedCentralCrossRefGoogle Scholar
  54. Li Q, Lawrence CB, Xing H-Y, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635–639PubMedCrossRefGoogle Scholar
  55. Li HP, Zhang JB, Shi RP, Huang T, Fischer R, Liao YC (2008) Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant Microbe Interact 21:1242–1248PubMedCrossRefGoogle Scholar
  56. Liu RS, Huang H, Yang Q, Liu WY (2002) Purification of α-sarcin and an antifungal protein from mold (Aspergillus giganteus) by chitin affinity chromatography. Protein Expr Purif 25:50–58PubMedCrossRefGoogle Scholar
  57. López-García B, Moreno AB, San Segundo B, De los Ríos V, Manning JM, Gavilanes JG, Martínez-del-Pozo A (2010) Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr Purif 70:206–210PubMedCrossRefGoogle Scholar
  58. Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374PubMedCrossRefGoogle Scholar
  59. Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek 75:21–31PubMedCrossRefGoogle Scholar
  60. Martínez Del Pozo A, Lacadena V, Mancheno JM, Olmo N, Onaderra M, Gavilanes JG (2002) The antifungal protein AFP of Aspergillus giganteus is an oligonucleotide/oligosaccharide binding (OB) fold-containing protein that produces condensation of DNA. J Biol Chem 277:46179–46183PubMedCrossRefGoogle Scholar
  61. Martín-Urdiroz M, Martínez-Rocha AL, Di Pietro A, Martínez-del-Pozo A, Roncero MI (2009) Differential toxicity of antifungal protein AFP against mutants of Fusarium oxysporum. Int Microbiol 12:115–121PubMedGoogle Scholar
  62. Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171PubMedCrossRefGoogle Scholar
  63. Marx F, Salvenmoser W, Kaiserer L, Graessle S, Weiler-Görz R, Zadra I, Oberparleiter C (2005) Proper folding of the antifungal protein PAF is required for optimal activity. Res Microbiol 156:35–46PubMedCrossRefGoogle Scholar
  64. McIntyre M, Berry DR, McNeil B (2000) Role of proteases in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion. Appl Microbiol Biotechnol 53:235–242PubMedCrossRefGoogle Scholar
  65. McNeil B, Berry DR, Harvey LM, Grant A, White S (1998) Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol Bioeng 57:297–305PubMedCrossRefGoogle Scholar
  66. Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28PubMedCrossRefGoogle Scholar
  67. Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11PubMedCrossRefGoogle Scholar
  68. Moreno AB, Del Pozo AM, Borja M, Segundo BS (2003) Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344–1353PubMedCrossRefGoogle Scholar
  69. Moreno AB, Peñas G, Rufat M, Bravo JM, Estopà M, Messeguer J, San Segundo B (2005) Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Mol Plant Microbe Interact 18:960–972PubMedCrossRefGoogle Scholar
  70. Moreno AB, Martínez Del Pozo A, San Segundo B (2006) Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 72:883–895PubMedCrossRefGoogle Scholar
  71. Nakaya K, Omata K, Okahashi I, Nakamura Y, Kolekenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38PubMedCrossRefGoogle Scholar
  72. Newbury HJ (2009) Plant molecular breeding. Blackwell, OxfordGoogle Scholar
  73. Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196CrossRefGoogle Scholar
  74. Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838PubMedCrossRefGoogle Scholar
  75. Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166PubMedCrossRefGoogle Scholar
  76. Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 286:13859–13868PubMedPubMedCentralCrossRefGoogle Scholar
  77. Palencia ER, Hinton DM, Bacon CW (2010) The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins 2:399–416PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ren X, Kong Q, Wang H, Yu T, Tang YJ, Zhou WW, Zheng X (2012) Control of apple blue mold by Pichia pastoris recombinant strains. Bioprocess Biosyst Eng 35:761–767PubMedCrossRefGoogle Scholar
  79. Rodriguez E, Martinez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116PubMedCrossRefGoogle Scholar
  80. Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541–547PubMedCrossRefGoogle Scholar
  81. Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619PubMedCrossRefGoogle Scholar
  82. Seibold M, Wolschann P, Bodevin S, Olsen O (2011) Properties of the bubble protein, a defensin and an abundant component of a fungal exudate. Peptides 32:1989–1995PubMedCrossRefGoogle Scholar
  83. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221CrossRefGoogle Scholar
  84. Skouri-Gargouri H, Gargouri A (2008) First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus. Peptides 29:1871–1877PubMedCrossRefGoogle Scholar
  85. Skouri-Gargouri H, Ben Ali M, Gargouri A (2009) Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus. Peptides 30:1798–1804PubMedCrossRefGoogle Scholar
  86. Szappanos H, Szigeti GP, Pál B, Rusznák Z, Szűcs G, Rajnavölgyi É, Balla J, Balla G, Nagy E, Leiter É, Pócsi I, Marx F, Csernoch L (2005) The Penicillium chrysogenum-derived antifungal peptide shows no toxic effects on mammalian cells in the intended therapeutic concentration. Naunyn Schmiedebergs Arch Pharmacol 371:122–132PubMedCrossRefGoogle Scholar
  87. Szappanos H, Szigeti GP, Pál B, Rusznák Z, Szűcs G, Rajnavölgyi É, Balla J, Balla G, Nagy E, Leiter É, Pócsi I, Hagen S, Meyer V, Csernoch L (2006) The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides 27:1717–1725PubMedCrossRefGoogle Scholar
  88. Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593PubMedPubMedCentralCrossRefGoogle Scholar
  89. Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V (2005) New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res Microbiol 156:47–56PubMedCrossRefGoogle Scholar
  90. Tóth L, Kele Z, Borics A, Nagy LG, Váradi G, Virágh M, Takó M, Vágvölgyi C, Galgóczy L (2016) NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express 6:75PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tsitsigiannis DI, Dimakopoulou M, Antoniou PP, Tjamos EC (2012) Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol Mediterr 51:158–174Google Scholar
  92. Tu CY, Chen YP, Yu MC, Hwang IE, Wu DY, Liaw LL (2016) Characterization and expression of the antifungal protein from Monascus pilosus and its distribution among various Monascus species. J Biosci Bioeng 122:27–33PubMedCrossRefGoogle Scholar
  93. Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75CrossRefGoogle Scholar
  94. Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403CrossRefGoogle Scholar
  95. van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho KI, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126PubMedCrossRefGoogle Scholar
  96. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168PubMedCrossRefGoogle Scholar
  97. van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570PubMedCrossRefGoogle Scholar
  98. Váradi G, Tóth GK, Kele Z, Galgóczy L, Fizil Á, Batta G (2013) Synthesis of PAF, an antifungal protein from P. chrysogenum, by native chemical ligation: native disulfide pattern and fold obtained upon oxidative refolding. Chemistry 19:12684–12692PubMedCrossRefGoogle Scholar
  99. Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant Microbe Interact 14:1327–1331PubMedCrossRefGoogle Scholar
  100. Virágh M, Vörös D, Kele Z, Kovács L, Fizil Á, Lakatos G, Maróti G, Batta G, Vágvölgyi C, Galgóczy L (2014) Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif 94:79–84PubMedCrossRefGoogle Scholar
  101. Virágh M, Marton A, Vizler C, Tóth L, Vágvölgyi C, Marx F, Galgóczy L (2015) Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell 6:518–528PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vriens K, Cammue BPA, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303PubMedCrossRefGoogle Scholar
  103. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158PubMedCrossRefGoogle Scholar
  104. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093PubMedCrossRefGoogle Scholar
  105. Wen C, Guo W, Chen X (2014) Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. J Microbiol Biotechnol 24:1337–1345PubMedCrossRefGoogle Scholar
  106. Wu Y, He Y, Ge X (2011) Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease. Appl Microbiol Biotechnol 90:1303–1310PubMedCrossRefGoogle Scholar
  107. Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ (2015) Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 99:4961–4981PubMedCrossRefGoogle Scholar
  108. Zasloff M (2002) Antimicrobial peptide of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  109. Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838PubMedCrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2016

Authors and Affiliations

  • Éva Leiter
    • 1
  • Tamás Gáll
    • 2
  • László Csernoch
    • 3
  • István Pócsi
    • 1
  1. 1.Department of Biotechnology and Microbiology, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary
  2. 2.MTA-DE Vascular Biology, Thrombosis and Hemostasis Research GroupHungarian Academy of SciencesDebrecenHungary
  3. 3.Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary

Personalised recommendations