The seesaw of diet restriction and lifespan: lessons from Drosophila studies

Abstract

Diet restriction (DR) studies undergo the implementation of reduced single or multiple component/s of the fly food without causing malnutrition. The question of how and why DR modifies the fate of lifespan in fruit flies Drosophila melanogaster has prompted us to emphasize by attending the control food composition first. Certain concentrations of DR food do not always confer an extended lifespan, rather it enables the flies to achieve their normal lifespan, which was probably reduced by the control food per se (having toxic effect caused due to the excess levels of dietary components). However, the current paradigm of DR studies has elicited its benefits and losses via trade-offs in the organismal traits and have highlighted the need for a common diet, but have not claimed the tested diets as balanced. So, the DR effect on lifespan and other fitness traits cannot be justified only based on varying control food across labs and hence, the approach of DR studies has to be revisited and a balanced diet has to be formulated. The current article discusses the need for a balanced diet, the traits to be considered before designing a diet, and certain problems in the existing synthetic medium. Therefore, based on the control food composition, the validity of lifespan extension conferred by these nutrient restricted diets need to be accounted for.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

We confirm that the current manuscript comprises only the data which are present in the main manuscript file and do not contain any further associated data.

References

  1. Aguila JR, Hoshizaki DK, Gibbs AG (2013) Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J Exp Biol 216:399–406

    PubMed  Article  PubMed Central  Google Scholar 

  2. Barnes AI, Wigby S, Boone JM et al (2008) Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc R Soc B 275:1675–1683

    PubMed  Article  PubMed Central  Google Scholar 

  3. Bass TM, Grandison RC, Wong R et al (2007) Optimization of dietary restriction protocols in Drosophila. J Gerontol A Biol Sci Med Sci 62:1071–1081

    PubMed  PubMed Central  Article  Google Scholar 

  4. Bazzell B, Ginzberg S, Healy L et al (2013) Dietary composition regulates Drosophila mobility and cardiac physiology. J Exp Biol 216:859–868

    PubMed  PubMed Central  Article  Google Scholar 

  5. Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 263:755–759

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Chippindale AK, Leroi AM, Kim SB et al (1993) Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 6:171–193

    Article  Google Scholar 

  7. Chippindale AK, Alipaz JA, Rose MR (2004) Experimental evolution of accelerated development in Drosophila. 2. Adult fitness and the fast development Syndrome. In: Passananti HB, Matos M (eds) Methuselah flies: a case study in the evolution of aging. World Scientific, Singapore, pp 413–435

    Google Scholar 

  8. de Moed GH, De Jong G, Scharloo W (1997) Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genet Res 70:35–43

    PubMed  Article  PubMed Central  Google Scholar 

  9. Deas JB, Blondel L, Extavour CG (2019) Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc Biol Sci 286:20182778

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dick KB, Ross CR, Yampolsky LY (2011) Genetic variation of dietary restriction and the effects of nutrient-free water and amino acid supplements on lifespan and fecundity of Drosophila. Genet Res Camb 93:265–273

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Emborski C, Mikheyev AS (2019) Ancestral diet transgenerationally influences offspring in a parent-of-origin and sex-specific manner. Philos Trans R Soc Lond B Biol Sci 374:20180181

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Güler P, Ayhan N, Kosukcu C et al (2015) The effects of larval diet restriction on developmental time, preadult survival, and wing length in Drosophila melanogaster. Turk J Zool 39:395–403

    Article  Google Scholar 

  14. Harper JM, Leathers CW, Austad SN (2006) Does caloric restriction extend life in wild mice? Aging Cell 5:441–449

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Keebaugh ES, Yamada R, Ja WW (2019) The nutritional environment influences the impact of microbes on Drosophila melanogaster life span. mBio 10:e00885-19

    PubMed  PubMed Central  Article  Google Scholar 

  16. Klepsatel P, Procházka E, Gáliková M (2018) Crowding of Drosophila larvae affects lifespan and other life-history traits via reduced availability of dietary yeast. Exp Gerontol 110:298–308

    PubMed  Article  PubMed Central  Google Scholar 

  17. Kolss M, Vijendravarma RK, Schwaller G et al (2009) Life-history consequences of adaptation to larval nutritional stress in Drosophila. Evolution 63:2389–2401

    PubMed  Article  PubMed Central  Google Scholar 

  18. Kopec S (1928) On the influence of intermittent starvation on the longevity of the imaginal stage of Drosophila melanogaster. Br J Exp Biol 5:204–211

    Google Scholar 

  19. Kristensen TN, Overgaard J, Loeschcke V et al (2011) Dietary protein content affects evolution for body size, body fat and viability in Drosophila melanogaster. Biol Lett 7:269–272

    PubMed  Article  PubMed Central  Google Scholar 

  20. Krittika S, Yadav P (2019) An overview of two decades of diet restriction studies using Drosophila. Biogerontol 20:723–740

    Article  Google Scholar 

  21. Krittika S, Yadav P (2020) Dietary protein restriction deciphers new relationships between lifespan, fecundity and activity levels in fruit flies Drosophila melanogaster. Sci Rep 10:10019

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Krittika S, Lenka A, Yadav P (2019) Evidence of dietary protein restriction regulating pupation height, development time and lifespan in Drosophila melanogaster. Biol Open 8:bio042952

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Le Bourg E, Médioni J (1991) Food restriction and longevity in Drosophila melanogaster. Age Nutr 2:90–94

    Google Scholar 

  24. Lebreton S, Witzgall P, Olsson M et al (2014) Dietary glucose regulates yeast consumption in adult Drosophila males. Front Physiol 5:504

    PubMed  PubMed Central  Article  Google Scholar 

  25. Lee WC, Micchelli CA (2013) Development and characterization of a chemically defined food for Drosophila. PLoS ONE 8:e67308

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Lee KP, Simpson SJ, Clissold FJ et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci USA 105:2498–2503

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Lints FA, Lints CV (1969) Influence of preimaginal environment on fecundity and ageing in Drosophila melanogaster hybrids. I. Preimaginal population density. Exp Gerontol 4:231–244

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Mair W, Piper MDW, Partridge L (2005) Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol 3:e223

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Matzkin LM, Johnson S, Paight C et al (2011) Dietary protein and sugar differentially affect development and metabolic pools in ecologically diverse Drosophila. J Nutr 141:1127–1133

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Metaxakis A, Partridge L (2013) Dietary restriction extends lifespan in wild-derived populations of Drosophila melanogaster. PLoS ONE 8:e74681

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Min KJ, Yamamoto R, Buch S et al (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7:199–206

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Piper MD, Partridge L (2007) Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet 3:e57

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Piper MD, Blanc E, Leitão-Gonçalves R et al (2014) A holidic medium for Drosophila melanogaster. Nat Methods 11:100–105

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Rapport EW, Stanley-Samuelson D, Dadd RH (1984) Ten generations of Drosophila melanogaster reared axenically on a fatty acid-free holidic diet. Arch Insect Biochem Physiol 1:243–250

    CAS  Article  Google Scholar 

  35. Reis T (2016) Effects of synthetic diets enriched in specific nutrients on Drosophila development, body fat, and lifespan. PLoS ONE 11:e0146758

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Rodrigues MA, Martins NE, Balance LF et al (2015) Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J Insect Physiol 81:69–80

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Sang JH (1956) The quantitative nutritional requirements of 391 Drosophila melanogaster. J Exp Biol 33:45–72

    CAS  Google Scholar 

  38. Schmidt PS, Paaby AB (2008) Reproductive diapause and life-history clines in North American populations of Drosophila melanogaster. Evolution 62:1204–1215

    PubMed  Article  PubMed Central  Google Scholar 

  39. Sgrò CM, Van Heerwaarden B, Kellermann V et al (2013) Complexity of the genetic basis of ageing in nature revealed by a clinal study of lifespan and methuselah, a gene for ageing, in Drosophila from eastern Australia. Mol Ecol 22:3539–3551

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. Shell BC, Schmitt RE, Lee KM et al (2018) Measurement of solid food intake in Drosophila via consumption-excretion of a dye tracer. Sci Rep 8:11536

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Skorupa DA, Dervisefendic A, Zwiener J et al (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7:478–490

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Stefana MI, Driscoll PC, Obata F et al (2017) Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat comm 8:1384

    Article  CAS  Google Scholar 

  43. Strilbytska O, Velianyk V, Burdyliuk N et al (2020) Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in Drosophila. Comp Biochem Physiol A Mol Integr Physiol 241:110622

    CAS  PubMed  Article  Google Scholar 

  44. Troen AM, French EE, Roberts JF et al (2007) Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age 29:29–39

    CAS  PubMed  Article  Google Scholar 

  45. Yadav P, Sharma VK (2014) Circadian clocks of faster developing fruit fly populations also age faster. Biogerontol 15:33–45

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their careful reading and inputs to improve the final version of the manuscript.

Funding

S.K. acknowledges the Department of Science and Technology- Government of India, for the INSPIRE fellowship (IF170750). P.Y. acknowledges the Science and Engineering Research Board (File No.-CRG/2019/003184), Department of Science and Technology- Government of India, India for the financial support and SASTRA Deemed to be University, Thanjavur (TN), India for the infrastructure.

Author information

Affiliations

Authors

Contributions

SK & PY conceived the idea. SK wrote the initial versions of the text with help from PY and both authors corrected, read and approved the final versions of the manuscript.

Corresponding author

Correspondence to Pankaj Yadav.

Ethics declarations

Conflict of interest

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krittika, S., Yadav, P. The seesaw of diet restriction and lifespan: lessons from Drosophila studies. Biogerontology (2021). https://doi.org/10.1007/s10522-021-09912-3

Download citation

Keywords

  • Drosophila melanogaster
  • Diet restriction
  • Development time
  • Balanced diet
  • Lifespan